LETTER
A Short and Efficient Synthesis of Licochalcone E
2291
(7) Park, E. J.; Park, H. R.; Lee, J. S.; Kim, J. W. Planta Med.
1998, 64, 464.
(8) Nielsen, S. F.; Chen, M.; Theander, T. G.; Kharazmi, A.;
Christensen, S. B. Bioorg. Med. Chem. Lett. 1995, 5, 449.
(9) Nielsen, S. F.; Christensen, S. B.; Cruciani, G.; Kharazmi,
A.; Liljefors, T. J. Med. Chem. 1998, 41, 4819.
OH
O
Claisen rearrangement
OHC
MeO
OMe
CHO
(10) Haraguchi, H.; Tanimoto, K.; Tamura, Y.; Mizutani, K.;
Kinoshita, T. Phytochemistry 1998, 48, 125.
10
9
(11) Haraguchi, H.; Ishikawa, H.; Mizutani, K.; Tamura, Y.;
Kinoshita, T. Bioorg. Med. Chem. 1998, 6, 339.
H
O
(12) Chang, H. J.; Yoon, G.; Park, J. S.; Kim, M. H.; Back, M. K.;
Kim, N. H.; Shin, B. A.; Ahn, B. W.; Cheon, S. H.; Jung,
Y. D. Biol. Pharm. Bull. 2007, 30, 2290.
O
H
– H+
+ H+
tautomerization
(13) Yoon, G.; Lee, W. J.; S, N.; Cheon, S. H. Bioorg. Med.
Chem. Lett. 2009, 19, 5155.
MeO
MeO
(14) (a) Na, Y.; Cha, J. H.; Yoon, H. G.; Kwon, Y. J. Chem.
Pharm. Bull. 2009, 57, 607. (b) Yoon, G.; Liu, Z.; Jeong,
H. J.; Cheon, S. H. Bull. Korean Chem. Soc. 2009, 30, 2959.
(c) Liu, Z.; Yoon, G.; Cheon, S. H. Tetrahedron 2010, 66,
3165. (d) Yoon, G.; Oak, M.; Lee, J.; Cheon, S. H. Bull.
Korean Chem. Soc. 2010, 31, 1085.
(15) Schobert, R.; Siegfried, S.; Gordon, G.; Mulholland, D.;
Nieuwenhuyzen, M. Tetrahedron Lett. 2001, 42, 4561.
(16) Roberts, R. M.; Landolt, R. G. J. Org. Chem. 1966, 31, 2699.
(17) Coombes, C. L.; Moody, C. J. J. Org. Chem. 2008, 73, 6758.
(18) Nakamura, S.; Ishihara, K.; Yamamoto, H. J. Am. Chem.
Soc. 2000, 122, 8131.
CHO
CHO
11
12
H
O
O
OH
MeO
CHO
MeO
CHO
OHC
OMe
13
13
5
(19) Xu, R. S.; Wen, G. L.; Jiang, S. F.; Wang, C. G.; Jiang, F. X.;
Xie, Y. Y.; Gao, Y. S. Acta Chim. Sinica 1979, 37, 289.
(20) Kromann, H.; Larsen, M.; Boesen, T.; Schonning, K.;
Nielsen, S. F. Eur. J. Med. Chem. 2004, 39, 993.
Scheme 3 The mechanism of abnormal Claisen rearrangement
reaction
In summary, we have developed an efficient and short ac-
cess to licochalcone E via a three-step procedure with an
overall yield of 20%.21 This simple and efficient route
makes the synthesis of licochalcone E in large scale pos-
sible. Furthermore, our result presented herein implies
that the synthesis of other analogues of this family may
also be carried out via the abnormal Claisen rearrange-
ment reaction. Further biological study of licochalcone E
and the synthesis of other modified analogues and deriva-
tives are currently underway in our group.
(21) Procedures for the Preparation of Licochalcone E and
Selected Spectral Data: At r.t., K2CO3 (2.8 g, 20.3 mmol)
which had been grinded carefully was added to the stirred
solution of 4-hydroxy-2-methoxybenzaldehyde (2.0 g, 13.2
mmol) in anhyd acetone. Then after 10 min, prenyl bromide
(1.80 mL, 15.3 mmol) was added to the reaction mixture by
pipette. The reaction was stirred for 24 h, until it was
complete (checked by TLC). K2CO3 was removed by
filtration, and the solvent was evaporated under vacuum.
The crude residue was recrystallized from PE to generate the
white-colored solid compound 9 (2.4 g, yield 86%).
Rf 0.41 (PE–acetone = 10:2). MS: m/z = 243.2 [M + Na]+.
1H NMR (300 MHz, CDCl3): d = 1.76 (s, 3 H), 1.81 (s, 3 H),
3.89 (s, 3 H), 4.57–4.59 (d, J = 6.9 Hz, 2 H), 5.46–5.51 (t,
J = 6.9 Hz, 1 H), 6.46–6.47 (d, J = 2.1 Hz, 1 H), 6.54–6.57
(dd, J = 2.1, 8.7 Hz, 1 H), 7.79–7.82 (d, J = 8.7 Hz, 1 H),
10.29 (s, 1 H). 13C NMR (75 MHz, CDCl3): d = 18.20, 25.79,
55.52, 65.11, 98.56, 106.20, 118.62, 118.86, 130.66, 139.25,
163.50, 165.45, 188.28. IR (KBr): 2970, 2940, 1680, 1620,
1580, 1500, 1450, 1420, 1390, 1310, 1290, 1270, 1200,
1120, 1030, 928, 818, 787, 642, 602 cm–1. Anal. Calcd for
C13H16O3: C, 70.89; H, 7.32. Found: C, 70.82; H, 7.29.
A solution of compound 9 (1.0 g, 4.54 mmol) in freshly
distilled N,N-dimethylaniline (5 mL) under nitrogen
atmosphere protection was stirred for 26 h at about 185 °C in
sealed tube. Then after cooling to r.t., the reaction mixture
was neutralized by dilute 10% HCl solution until its pH
changed to 5–7. The solution was extracted with Et2O. The
Et2O layer was washed with sat. NaHCO3 and NaCl solution
separately, and then dried with anhyd MgSO4. The residue
obtained after evaporation of the solvent was separated via
silica gel column chromatography using mixtures of PE and
acetone (30:1) as eluent to give the key intermediate 5 as a
white solid (0.32 g, 32%), accompanied by decomposed
starting material 4-hydroxy-2-methoxybenzaldehyde (1; 40
mg, yield: 4%).
Supporting Information for this article is available online at
Acknowledgment
This research was supported by funding from the Scientific Fore-
front and Interdisciplinary Innovation Project, JiLin University
(Grant, No 421031531412), P. R. of China.
References and Notes
(1) Huang, K. C. The Pharmacology of Chinese Herbs; CRC
Press: Florida, 1993, 277.
(2) Asl, M. N.; Hosseinzadeh, H. Phytother. Res. 2008, 22, 709.
(3) Saitoh, T.; Shibata, S. Tetrahedron Lett. 1975, 4461.
(4) Ayabe, S. I.; Kobayashi, M.; Hikichi, M.; Matsumoto, K.;
Furuya, T. Phytochemistry 1980, 19, 2179.
(5) Kajiyama, K.; Demizu, S.; Hiraga, Y.; Kinoshita, K.;
Koyama, K.; Takahashi, K.; Tamura, Y.; Okada, K.;
Kinoshita, T. Phytochemistry 1992, 31, 3229.
(6) Yoon, G.; Jung, Y. D.; Cheon, S. H. Chem. Pharm. Bull.
2005, 53, 694.
Synlett 2010, No. 15, 2289–2292 © Thieme Stuttgart · New York