5262
G. Mehta et al. / Tetrahedron Letters 50 (2009) 5260–5262
7. Landelle, H.; Godard, A. M.; Laduree, D.; Chenu, E.; Robba, M. Chem. Pharm. Bull.
OMe
OMe
OMe
1991, 39, 3057–3060.
MeO
MeO
MeO
8. All new compounds were fully characterized on the basis of IR, 1H NMR, 13C
NMR, and HRMS data. Spectral data of selected compounds are as follows:
Br
CHO
CHO
Compound 15: IR (neat): mmax 2924, 1680, 1551, 1461, 1212, 1036 cmÀ1 1H
;
O
O
O
NMR (300 MHz, CDCl3): d 7.45 (s, 1H), 7.05 (s, 1H), 3.92 (s, 3H), 3.91 (s, 3H),
2.61 (s, 3H); 13C NMR (75 MHz, CDCl3): d 187.89, 153.62, 151.53, 148.46,
148.11, 122.50, 112.43, 102.83, 100.42, 60.91, 56.29, 26.15; HRMS (ES): m/z
calcd for C12H11BrO4 (M+Na)+: 320.9738, found: 320.9733; compound 17: IR
a
+
H
H
(neat): mmax 2925, 1682, 1553, 1460, 1214, 1043 cmÀ1 1H NMR (300 MHz,
;
H
20
25
26
CDCl3): d 7.47 (s, 1H), 7.07 (s, 1H), 5.20 (t, J = 7.0 Hz, 1H), 5.07 (t, J = 6.3 Hz, 1H),
3.94 (s, 3H), 3.93 (s, 3H), 3.01 (t, J = 7.5 Hz, 2H), 2.47 (dd, J = 14.5, 7.3 Hz, 2H),
2.09–1.99 (m, 4H), 1.66 (s, 6H), 1.59 (s, 3H); 13C NMR (75 MHz, CDCl3): d
190.82, 153.97, 151.76, 148.61, 148.31, 136.73, 131.37, 124.24, 122.78, 122.43,
112.33, 103.09, 100.72, 61.19, 56.59, 39.66, 39.18, 26.66, 25.63, 22.73, 17.65,
16.05; HRMS (ES): m/z calcd for C22H27BrO4 (M+Na)+: 457.0990, found:
457.0992; compound 18: IR (neat): mmax 2922, 1613, 1578, 1460, 1211,
Scheme 5. Reagents and conditions: (a) (i) nBuLi, THF, À78 °C, 5 min; (ii) DMF,
À78 °C–rt, 1 h, 75%.
1045 cmÀ1 1H NMR (300 MHz, CDCl3): d 6.95 (s, 1H), 6.62 (s, 1H), 5.86 (s,
;
that with geranyl bromide described above, but only marginally.
Compound 22 embodying cyclogeranyl and benzofuran moieties
was subjected to Wittig olefination to furnish the exomethylene
product 23,8 which was reduced catalytically in a regioselective
manner to furnish 24.8 Chlorosulfonic acid-mediated furan–olefin
cyclization followed the desired course and afforded 20 as an epi-
meric mixture, which was found to be identical to that obtained
above from geranyl bromide and benzofuran 15.
With the key precursor 20 in hand, albeit as a mixture of epi-
mers, the bromine substituent was transformed into an aldehyde
group by metal exchange and DMF-mediated formylation to fur-
nish a conveniently separable (HPLC) mixture of tetracyclic alde-
hydes 25 and 26,8 Scheme 5. The resulting liphagal dimethyl
ether 25 and the 8-epi-liphagal dimethyl ether 26 were found to
be spectroscopically identical with the reported compounds.3,11
1H), 5.22–5.18 (m, 2H), 5.10 (t, J = 6.3 Hz, 1H), 3.90 (s, 6H), 2.48–2.43 (m, 2H),
2.34–2.27 (m, 2H), 2.08–1.98 (m, 4H), 1.69 (s, 3H), 1.61 (s, 6H); 13C NMR
(75 MHz, CDCl3): d 157.77, 150.76, 147.11, 145.41, 136.89, 136.01, 131.32,
124.56, 124.34, 123.37, 113.17, 102.86, 102.46, 99.87, 61.13, 56.77, 39.69,
33.18, 27.26, 26.75, 25.64, 17.65, 16.10; HRMS (ES): m/z calcd for C23H29BrO3
(M+Na+: 455.1198, found: 455.1186; compound 19: IR (neat):
m
max 2927, 1460,
1211, 1045 cmÀ1
;
1H NMR (300 MHz, CDCl3): d 6.93 (s, 1H), 6.34 (s, 1H), 5.15–
5.07 (m, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 3.02–2.91 (m, 1H), 2.08–1.75 (m, 8H),
1.68 (s, 3H), 1.60 (s, 3H), 1.58 (s, 3H), 1.33 (d, J = 6.9 Hz, 3H); 13C NMR (75 MHz,
CDCl3):
d 165.24, 150.50, 146.85, 144.28, 135.63, 131.30, 124.42, 124.38,
123.85, 102.25, 101.30, 99.80, 61.13, 56.83, 39.71, 35.48, 33.14, 26.70, 25.66,
25.51, 19.06, 17.67, 16.04; HRMS (ES): m/z calcd for C23H31BrO3 (M+Na)+:
457.1354, found: 457.1351; compound 22: IR (neat): mmax 2937, 1687, 1458,
1337, 1214, 1043 cmÀ1 1H NMR (300 MHz, CDCl3): d 7.48 (s, 1H), 7.07 (s, 1H),
;
3.94 (s, 3H), 3.93 (s, 3H), 3.05–2.99 (m, 2H), 2.45 (t, J = 8.55 Hz, 2H), 1.95 (t,
J = 6.0 Hz, 2H), 1.69 (s, 3H), 1.62–1.57 (m, 2H), 1.48–1.42 (m, 2H), 1.06 (s, 6H);
13C NMR (75 MHz, CDCl3): d 191.26, 153.87, 151.71, 148.51, 148.26, 135.79,
128.52, 122.80, 112.37, 102.97, 100.72, 61.19, 56.52, 39.92, 39.82, 35.12, 32.83,
28.54, 23.21, 19.92, 19.48; HRMS (ES): m/z calcd for C22H27BrO4 (M+H)+:
435.1172, found: 435.1183; compound 23: IR (neat): mmax 2927, 1461, 1339,
Since the
natural product liphagal
a-epimer 25 has already been deprotected to give the
1212, 1046 cmÀ1 1H NMR (300 MHz, CDCl3): d 6.96 (s, 1H), 6.67 (s, 1H), 5.83 (s,
;
1
through boron triiodide-mediated
demethylation,3 our acquisition of the tetracyclic dimethyl ether
25 constitutes a formal synthesis of the natural product.
1H), 5.23 (s, 1H), 3.90 (s, 6H), 2.50–2.44 (m, 2H), 2.30–2.24 (m, 2H), 1.95 (t,
J = 6.0 Hz, 2H), 1.69 (s, 3H), 1.62–1.54 (m, 2H), 1.47–1.41 (m, 2H), 1.05 (s, 6H);
13C NMR (75 MHz, CDCl3): d 157.78, 150.71, 147.04, 138.08, 136.65, 127.86,
124.52, 112.70, 102.84, 102.22, 61.16, 56.67, 39.86, 35.05, 35.02, 33.59, 32.82,
28.69, 28.65, 20.03, 19.52; HRMS (ES): m/z calcd for C23H29BrO3 (M+H)+:
433.1379, found: 433.1365; compound 24: IR (neat): mmax 2936, 1458, 1212,
In conclusion, a short (nine linear steps from a commercial
starting material), scalable, and diversity-oriented approach to
the bioactive marine natural product liphagal has been described.
1045, 1000 cmÀ1 1H NMR (300 MHz, CDCl3): d 6.92 (s, 1H), 6.37 (s, 1H), 3.89 (s,
;
3H), 3.88 (s, 3H), 2.98–2.92 (s, 1H), 1.97–1.83 (m, 4H), 1.56–1.50 (m, 6H), 1.42–
1.25 (m, 6H), 0.95 (s, 6H); 13C NMR (75 MHz, CDCl3): d 165.04, 150.46, 146.76,
144.20, 136.96, 127.17, 124.38, 102.09, 101.49, 99.78, 61.14, 56.77, 39.89,
35.69, 34.94, 34.36, 32.78, 28.62, 28.59, 26.19, 19.77, 19.54, 18.98; HRMS (ES):
m/z calcd for C23H31BrO3 (M+H)+: 435.1536, found: 435.1529; compound 25: IR
Acknowledgments
G.M. thanks CSIR for the award of Bhatnagar Fellowship and a
research grant. This research was also facilitated through research
support from the Chemical Biology Unit of JNCASR, Bangalore. We
thank Dr. Ganesh Pandey, NCL, Pune for extending help to access
preparative HPLC.
(neat): mmax 2932, 1693, 1606, 1463, 1239, 1054 cmÀ1 1H NMR (400 MHz,
;
CDCl3): d 10.56 (s, 1H), 7.47 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.37–3.28 (m, 1H),
2.57–2.53 (m, 1H), 2.21–2.13 (m, 1H), 1.88–1.82 (m, 1H), 1.73–1.64 (m, 1H),
1.61–1.49 (m, 5H), 1.46 (d, J = 7.2 Hz, 3H), 1.37 (s, 3H), 1.30–1.22 (m, 2H), 0.99
(s, 3H), 0.96 (s, 3H); 13C NMR (100 MHz, CDCl3): d 188.43, 158.86, 149.49,
147.90, 146.34, 125.27, 124.58, 114.80, 113.09, 62.81, 57.29, 53.46, 41.87,
40.31, 39.46, 34.80, 34.77, 33.51, 33.26, 24.04, 22.11, 21.97, 20.20, 18.89; HRMS
(ES): m/z calcd for C24H32O4 (M+Na)+: 407.2198, found: 407.2189; compound
References and notes
26: IR (neat): mmax 2934, 1694, 1463, 1241, 1053 cmÀ1 1H NMR (300 MHz,
;
1. For a recent review, see: Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.;
Northcote, P. T.; Prinsep, M. R. Nat. Prod. Rep. 2008, 25, 35–94 and references
cited therein.
2. For reviews on marine natural products as drugs, see: (a) Molinski, T. F.;
Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Nat. Rev. Drug Disc. 2009, 8, 69–85; (b)
Marris, E. Nature 2006, 443, 904–905; (c) Newman, D. J.; Cragg, G. M. J. Nat.
Prod. 2004, 67, 1216–1238.
3. Marion, F.; Williams, D. E.; Patrick, D. O.; Hollander, I.; Mallon, R.; Kim, S. C.;
Roll, D. M.; Feldberg, L.; Soest, R. V.; Andersen, R. J. Org. Lett. 2006, 8, 321–324.
4. For recent reviews, see: (a) Sundstrom, T. J.; Anderson, A. C.; Wright, D. L. Org.
Biomol. Chem. 2009, 7, 840–850; (b) Hennessy, B. T.; Smith, D. L.; Ram, P. T.; Lu,
Y.; Mills, G. B. Nat. Rev. Drug Disc. 2005, 4, 988–1004.
CDCl3): d 10.57 (s, 1H), 7.42 (s, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 3.36–3.27 (m, 1H),
2.53–2.48 (m, 1H), 1.95–1.46 (m, 9H), 1.42 (d, J = 6.9 Hz, 3H), 1.41 (s, 3H), 1.29–
1.20 (m, 1H), 0.99 (s, 3H), 0.96 (s, 3H); 13C NMR (75 MHz, CDCl3): d 188.28,
157.65, 149.30, 148.03, 146.22, 125.28, 124.06, 115.08, 112.56, 62.79, 57.28,
50.35, 42.01, 40.35, 39.20, 35.79, 34.56, 33.72, 31.19, 22.83, 22.35, 20.45, 18.97,
18.72; HRMS (ES): m/z calcd for C24H32O4 (M+Na)+: 407.2198, found: 407.2189.
9. (a) Ishihara, K.; Ishibashi, H.; Yamamoto, H. J. Am. Chem. Soc. 2002, 124, 3647–
3655; (b) Barrero, A. F.; Altarejos, J.; Alvarez-Manzaneda, E. J.; Ramos, J. M.;
Salido, S. J. Org. Chem. 1996, 61, 2215–2218.
10. Crombie, B. S.; Smith, C.; Varnavas, C. Z.; Wallace, T. W. J. Chem. Soc., Perkin
Trans. 1 2001, 206–215.
11. The stereochemistry of 25 and 26 and of the precursor 20 followed from the
earlier work of Andersen.3
5. Bader, A. G.; Kang, S.; Zhao, L.; Vogt, P. K. Nat. Rev. Cancer 2005, 5, 921–929.
6. Mehta, G.; Likhite, N. S. Tetrahedron Lett. 2008, 49, 7113–7116.