ORGANIC
LETTERS
2009
Vol. 11, No. 19
4482-4484
Access to Ring-Expanded Analogues of
2-Amino Sugars
Jaideep Saha and Mark W. Peczuh*
Department of Chemistry, UniVersity of Connecticut, 55 North EagleVille Road
U-3060, Storrs, Connecticut 06269
Received August 7, 2009
ABSTRACT
Ring-expanded 2-N-acetylamino sugar analogs of D-glucose, D-galactose, and D-mannose have been prepared by a new synthetic route. Aspects
of the highly substituted r-amino aldehyde intermediates made them central to the approach. First, they were accessed via diastereoselective
addition of a vinyl Grignard onto protected glycosyl amines. Also, the sterics of the bis-protected amine favored the formation of only one
glycoside anomer. The new analogues reported here should prove useful in the development of tools to investigate the role of 2-amino sugars
in biology.
Carbohydrates that incorporate at least one 2-amino sugar
residue make up an important facet of glycobiology. The
diversity of examples ranges from small molecule natural
products1 to glycans,2 glycolipids,3 and glycoproteins.4
Functions mediated by these carbohydrates are similarly
broad and include antibiotic activity, biosynthesis, metabo-
lism, and cell-cell signaling. Among the most common
2-amino sugars are the N-acetylated gluco- (GlcNAc),
galacto- (GalNAc), and manno- (ManNAc) hexoses (1-3).
Analogues of 2-amino sugars have been utilized to explore
numerous aspects of glycobiology5 and also in the develop-
ment of new drugs.6
membered ring pyranoses to seven-membered ring septanoses
is akin to the homologation of purine and pyrimidine
nucleosides to their benzo-fused analogues9 or of R-amino
acids to ꢀ-amino acids.10 Syntheses of septanose carbohy-
drates to date have most commonly involved functionaliza-
tion of ring-expanded glycals (oxepines).11 Here we describe
a synthetic route for the preparation of 2-N-acetylamino
septanosides derived from D-glucose, D-galactose, and D-
mannose. Oxepines do not serve as intermediates in the
synthesis; rather, the expanded ring is formed via an
(4) (a) Weerapana, E.; Imperiali, B. Glycobiology 2006, 16, 91R. (b)
Slawson, C.; Housley, M. P.; Hart, G. W. J. Cell. Biochem. 2006, 97, 71.
(c) Dziadek, S.; Kunz, H. Chem. Record 2004, 3, 308.
(5) Agard, N. J.; Bertozzi, C. R. Acc. Chem. Res. 2009, 42, 788.
(6) Kondo, S.; Hotta, K. J. Infect. Chemother. 1999, 5, 1.
(7) (a) Markad, S.; Xia, S.; Surana, B.; Morton, M. D.; Hadad, C. M.;
Peczuh, M. W. J. Org. Chem. 2008, 73, 6341. (b) Castro, S.; Fyvie, W. S.;
Hatcher, S.; Peczuh, M. W. Org. Lett. 2005, 7, 4709.
(8) (a) Castro, S.; Duff, M.; Snyder, N.; Morton, M.; Kumar, C. V.;
Peczuh, M. W. Org. Biomol. Chem. 2005, 3, 3869. (b) DeMatteo, M.;
Snyder, N. L.; Morton, M.; Baldisseri, D. M.; Hadad, C. M.; Peczuh, M. W.
J. Org. Chem. 2005, 70, 24.
Our group has focused on the synthesis7 and characteriza-
tion8 of ring-expanded carbohydrates. Homologation of six-
(9) Kreuger, A. T.; Kool, E. T. Chem. Biol. 2009, 16, 242.
(10) (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. ReV. 2001,
101, 3219. (b) Kritzer, J. A.; Stephens, O. M.; Gurracino, D. A.; Reznik,
S. K.; Schepartz, A. Bioorg. Med. Chem. 2005, 13, 11.
(1) Silva, J. G.; Carvalho, I. Curr. Med. Chem. 2007, 14, 1101.
(2) Imberty, A.; Lortat-Jacob, H.; Pe´rez, S. Carbohydr. Res. 2007, 342,
430.
(11) (a) Boone, M. A.; McDonald, F. E.; Lichter, J.; Lutz, S.; Cao, R.;
Hardcastle, K. I. Org. Lett. 2009, 11, 851. (b) Peczuh, M. W.; Snyder, N. L.;
Fyvie, W. S. Carbohydr. Res. 2004, 339, 1163. (c) Peczuh, M. W.; Snyder,
N. L. Tetrahedron Lett. 2003, 44, 4057.
(3) Lanctot, P. M.; Gage, F. H.; Varki, A. P. Curr. Opin. Chem. Biol.
2007, 11, 373.
10.1021/ol9018387 CCC: $40.75
Published on Web 09/01/2009
2009 American Chemical Society