In a parallel experiment (Scheme 3, lower equation),
C-functionalization was successfully carried out using
paraformaldehyde as the electrophile according to an
aldolization–crotonization sequence. The olefinic QCH2
protons display a pair of doublets at d = 5.68 ppm and
4.87 ppm with a characteristic geminal coupling of 1.8 Hz.
In summary, we have developed a simple synthetic strategy
towards an anionic five-membered ring N-heterocyclic carbene
incorporating a reactive enolate group in its backbone. The
advantage of such a ligand is that it can be complexed with
transition metals, whereas its backbone can still be modified in
different ways after complexation. The concept disclosed here
will allow a divergent optimization and construction of
NHC-based catalysts in view to obtain better activities.12 By
extension, and upon suitable selection of the electrophile, it
should also be applicable to the generation of supported or
tagged catalysts directly from their soluble form. Studies
toward this goal are currently under investigation in our
laboratory.
3 K. E. Krahulic, G. D. Enright, M. Parvez and R. Roesler, J. Am.
Chem. Soc., 2005, 127, 4142.
4 (a) F. Ullah, M. K. Kindermann, P. G. Jones and J. Heinicke,
Organometallics, 2009, 28, 2441; (b) D. Tapu, C. Owens,
D. VanDerveer and K. Gwaltney, Organometallics, 2009, 28,
270; (c) F. Ullah, G. Bajor, T. Veszpremi, P. G. Jones and
´
J. W. Heinicke, Angew. Chem., Int. Ed., 2007, 46, 2697;
(d) M. D. Sanderson, J. W. Kamplain and C. W. Bielawski,
J. Am. Chem. Soc., 2006, 128, 16514; (e) A. J. Boydston and
C. W. Bielawski, Dalton Trans., 2006, 4073; (f) S. Saravanakumar,
M. K. Kindermann, J. Heinicke and M. Kockerling, Chem.
¨
Commun., 2006, 640; (g) A. J. Arduengo III, D. Tapu and
W. J. Marshall, Angew. Chem., Int. Ed., 2005, 44, 7240;
(h) S. Saravanakumar, A. I. Oprea, M. K. Kindermann,
P. G. Jones and J. Heinicke, Chem.–Eur. J., 2006, 12, 3143, and
references therein.
5 (a) K. Hirano, S. Urban, C. Huang and F. Glorius, Org. Lett.,
2009, 11, 1012; (b) D. M. Khramov, E. L. Rosen, J. A. V. Er,
P. D. Vu, V. M. Lynch and C. W. Bielawski, Tetrahedron, 2008, 64,
6853; (c) C. Lohre, R. Frohlich and F. Glorius, Synthesis, 2008,
¨
¨
2221; (d) A. Furstner, M. Alcarazo, V. Cesar and H. Krause,
´
Chem. Commun., 2006, 2176; (e) G. Altenhoff, R. Goddard,
C. W. Lehmann and F. Glorius, J. Am. Chem. Soc., 2004, 126,
15195.
6 For other anionic NHCs, see: (a) V. Cesar, N. Lugan and
´
Support from the CNRS and from the ANR (programme
blanc ANR-08-BLAN-0137-01) is gratefully acknowledged.
G. Lavigne, J. Am. Chem. Soc., 2008, 130, 11286;
(b) T. D. Forster, K. E. Krahulic, H. M. Tuononen,
R. McDonald, M. Parvez and R. Roesler, Angew. Chem., Int.
Ed., 2006, 45, 6356.
Notes and references
7 See
for
example:
A.
Kovacevic,
S.
Grundemann,
¨
J. R. Miecznikowski, E. Clot, O. Eisenstein and R. H. Crabtree,
Chem. Commun., 2002, 2580.
z Crystal data for 3a: C21H25ClN2O, M = 356.88, monoclinic,
a = 8.5416(3), b = 29.645(1), c = 8.7375(3) A, b = 118.109(2)1,
U = 1951.52(12) A3, T = 180(2) K, space group P21/c (no. 14), Z = 4,
32 567 reflections measured, 5587 unique (Rint = 0.0198) which were
used in all calculations. The final wR(F2) was 0.0680 (all data). Crystal
data for 7a: C29H36ClN2ORh, M = 566.96, triclinic, a = 12.5523(5),
b = 13.1214(4), c = 17.4887(7) A, a = 73.019(2)1, b = 89.920(1)1,
8 The molecular structure of compound 4a is depicted in the ESIw.
¨
9 For theoretical studies, see: (a) M. Tafipolsky, W. Sherer, K. Ofele,
G. R. J. Artus, B. Pedersen, W. A. Herrmann and G. S. McGrady,
J. Am. Chem. Soc., 2002, 124, 5865; (b) J. F. Lehmann,
S. G. Urquhart, L. E. Ennis, A. P. Hitchcock, K. Hatano,
S. Gupta and M. K. Denk, Organometallics, 1999, 18, 1862;
3
ꢀ
g = 77.013(2)1, U = 2678.02(17) A , T = 176(2) K, space group P1
(c) C. Heinemann, T. Muller, Y. Apeloig and H. Schwarz,
¨
(no. 2), Z = 4, 17 559 reflections measured, 8754 unique (Rint = 0.0248)
which were used in all calculations. The final wR(F2) was 0.0432
(all data).
J. Am. Chem. Soc., 1996, 118, 2023; (d) C. Boehme and
G. Frenking, J. Am. Chem. Soc., 1996, 118, 2039.
10 The mesityl groups are sterically hindered and block the rotation
around the Rh–CNHC bond (on the NMR time scale). Then
the molecule becomes C1-symmetric and the two protons are
diastereotopic.
11 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen
and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
12 A spectacular example of such an optimization by varying the
backbone was recently disclosed, see: K. M. Kuhn, J.-B. Bourg,
C. K. Chung, S. C. Virgil and R. H. Grubbs, J. Am. Chem. Soc.,
2009, 131, 5313.
1 (a) For books, see: N-Heterocyclic Carbenes in Transition
Metal Catalysis, Top. Organomet. Chem., ed. F. Glorius, Springer,
Berlin, 2007, vol. 21; (b) N-Heterocyclic Carbenes in Synthesis,
ed. S. P. Nolan, Wiley-VCH, Weinheim, 2006.
2 For selected reviews see: (a) F. E. Hahn and M. C. Jancke, Angew.
Chem., Int. Ed., 2008, 47, 3122; (b) K. J. Cavell, Dalton Trans.,
2008, 6676; (c) V. Cesar, S. Bellemin-Laponnaz and L. H. Gade,
´
Chem. Soc. Rev., 2004, 33, 619; (d) D. Bourissou, O. Guerret,
F. Gabbaı and G. Bertrand, Chem. Rev., 2000, 100, 1290.
¨
ꢃc
This journal is The Royal Society of Chemistry 2009
4722 | Chem. Commun., 2009, 4720–4722