C O M M U N I C A T I O N S
Table 2. Scope of the Cobalt Catalyzed Functionalization of
Alkenesa
In summary, we have documented a new cobalt-catalyzed C-C
bond forming reaction, which introduces an O-benzyloxime or
oximonitrile onto unactivated double bonds. The reaction is tolerant
to a range of functional groups and displays complete Markovnikov
selectivity. The reaction conditions are mild (EtOH, ambient temper-
atures), and the products can be further transformed into aldehydes as
well as amidoximes. Future work will be dedicated to study the
potential applications of these processes in the synthesis in more
complex settings as well as the development of asymmetric versions.
Acknowledgment. We thank the Swiss National Foundation for
support of this research (Grant 2-00020-119838).
Supporting Information Available: Experimental procedures and
spectral data for all products. This material is available free of charge via
References
(1) (a) Mikhaleva, A. I.; Zaitsev, A. B.; Trofimov, B. A. Russ. Chem. ReV.
2006, 75, 797–823. (b) Abele, E.; Lukevics, E. Org. Prep. Proced. Int.
2000, 32, 235–264. (c) Adams, J. P. J. Chem. Soc., Perkin Trans. 1 2000,
125–139. (d) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069–1094.
(e) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895–1946.
(2) (a) Abele, E.; Abele, R.; Rubina, K.; Lukevics, E. Chem. Heterocycl.
Compd. 2005, 41, 137–162. (b) Abele, E.; Abele, R.; Lukevics, E. Chem.
Heterocycl. Compd. 2004, 40, 1–15. (c) Abele, E.; Abele, R.; Dzenitis, O.;
Lukevics, E. Chem. Heterocycl. Compd. 2003, 39, 3–35. (d) Abele, E.;
Lukevics, E. Chem. Heterocycl. Compd. 2001, 37, 141–169.
(3) For cobalt-catalyzed nitrosation of R,ꢀ-unsaturated amides and esters leading to
free oximes, see:(a) Kato, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1991, 64,
2948–2953. (b) Kato, K.; Mukaiyama, T. Chem. Lett. 1990, 1395–1398.
(4) An alternative synthesis would involve hydroformylation of olefin and
subsequent condensation with hydroxylamine. Although examples of
unactivated alkenes are known to undergo hydroformylation, controlling
the regioselectivity represents a major concern. (a) Klosin, J.; Landis, C. R.
Acc. Chem. Res. 2007, 40, 1251–1259. (b) Ungvary, F. Coord. Chem. ReV.
2007, 251, 2087–2102. (c) Wiese, K.-D.; Obst, D. Top. Organomet. Chem.
2006, 18, 1–33. (d) Breit, B. Acc. Chem. Res. 2003, 36, 264–275. (e) Breit,
B.; Seiche, W. Synthesis 2001, 1, 1–36.
(5) Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4519–4522.
(6) For prior work in this area from our own laboratory involving heterofunc-
tionalization reactions of olefins, see:(a) Waser, J.; Carreira, E. M. J. Am.
Chem. Soc. 2004, 126, 5676–5677. (b) Waser, J.; Carreira, E. M. Angew.
Chem., Int. Ed. 2004, 43, 4099–4102. (c) Waser, J.; Nambu, H.; Carreira,
E. M. J. Am. Chem. Soc. 2005, 127, 8294–8295. (d) Waser, J.; Gonza´lez-
Go´mez, J. C.; Nambu, H.; Huber, P.; Carreira, E. M. Org. Lett. 2005, 7,
4249–4252. (e) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am.
Chem. Soc. 2006, 128, 11693–11712. (f) Gaspar, B.; Waser, J.; Carreira,
E. M. Synthesis 2007, 24, 3839–3845. (g) Gaspar, B.; Carreira, E. M.
Angew. Chem., Int. Ed. 2008, 47, 5758–5760.
(7) (a) Kim, S.; Kim, S. Bull. Chem. Soc. Jpn. 2007, 80, 809–822. (b) Kim, S.;
Lim, C. J. Angew. Chem., Int. Ed. 2002, 41, 3265–3267. (c) Kim, S.; Song,
H.-J.; Choi, T.-L.; Yoon, J.-Y. Angew. Chem., Int. Ed. 2001, 40, 2524–
2526. (d) Ryu, I.; Kuriyama, H.; Minakata, S.; Komatsu, M.; Yoon, J.-Y.;
Kim, S. J. Am. Chem. Soc. 1999, 121, 12190–12191. (e) Kim, S.; Lee,
I. Y.; Yoon, J.-Y.; Oh, D. H. J. Am. Chem. Soc. 1996, 118, 5138–5139.
(8) Tro¨ger, J.; Lux, E. Arch. Pharm. 1909, 624–631.
a General procedure: catalyst 3 (2 mol %), alkene (0.5 mmol), reagent 1a
or 1g (0.6 mmol), EtOH (2 mL), CH3CN (0.5 mL), PhSiH3 (0.5 mmol),
argon, 23 °C.
Next, we examined the possibility of elaborating the products formed
in the Co-catalyzed process to other useful compounds. From the numerous
options we had in the case of oxime ethers, we decided to transform them
into the corresponding aldehyde, as this would constitute hydroformylation
of the starting olefin. As expected, we were able to convert our test alkene
2a directly into aldehyde 5 in a two-step procedure (eq 2). After
hydrooximation the corresponding product 4a was hydrolyzed with
formaldehyde in the presence of catalytic amounts of HCl to afford
exclusively the branched aldehyde 5 in 82% yield. This protocol thus
provides an alternative to a hydroformylation sequence. The oximonitrile
functional group in 4g could be transformed into an amidoxime, a group
which is present in many biologically active compounds11 such as
fungicides11b or insecticides.11c Indeed, a two-step sequence (eq 3) starting
with the hydrolysis of 4g to the corresponding amide followed by Hofmann
rearrangement using PhI(OAc)212 afforded N-carbalkoxy-O-benzyl ami-
doxime 6 in 93% yield.
(9) (a) Fontaine, P.; Chiaroni, A.; Masson, G.; Zhu, J. Org. Lett. 2008, 10,
1509–1512. (b) Jursic, B. S.; Douelle, F.; Bowdy, K.; Stevens, E. D.
Tetrahedron Lett. 2002, 43, 5361–5365. (c) Maruoka, K.; Miyazaki, T.;
Ando, M.; Matsumara, Y.; Sakane, S.; Hattori, K.; Yamamoto, H. J. Am.
Chem. Soc. 1983, 105, 2831–2843.
(10) Experiments using PhSiD3 with 4-phenylbutene (2a) showed complete d-
incorporation at the terminal position. For details see the Supporting Information.
(11) (a) Fylaktakidou, K. C.; Hadjipavlov-Litina, D. J.; Litinas, K. E.; Varella,
E. A.; Nicolaides, D. S. Curr. Pharm. Des. 2008, 14, 1001–1047. (b)
Rheinheimer, J.; Rose, I.; Grote, T.; Lorenz, G.; Strathmann, S. German
Patent No 19837794 A1, 2000. (c) Coviello, D. A.; Dvorin, S. L.;
Greenberg, B. J. Med. Chem. 1972, 15, 94–95.
(12) Moriarty, R. M.; Chany II, C. J.; Vaid, R. K.; Prakash, O.; Tuladhar, S. M.
J. Org. Chem. 1993, 58, 2478–2482.
JA904856K
9
J. AM. CHEM. SOC. VOL. 131, NO. 37, 2009 13215