and medicinal utility. 5-Substituted uracils and their nucleo-
sides are of immense biological significance because of their
use in chemotherapy of cancer.5a Some of the pyrimidine
derivatives also have anti viral and anti-HIV activities.5b-e
The Baylis-Hillman reaction is one of the most important
reactions in the field of organic synthesis.6 In fact, the
Baylis-Hillman adducts and their derivatives are useful
intermediates for the synthesis of many natural products and
biologically active molecules.6a-c,7 To the best of our
knowledge, Baylis-Hillman derivatives have not been
utilized for the domino Knoevenagel intramolecular hetero-
Diels-Alder reaction to date. In continuation of our interest
in the field of Baylis-Hillman chemistry,8 herein for the
first time we report a novel solid state melt reaction (SSMR)
via a domino reaction for the synthesis of complex tetracyclic
chromenopyran pyrimidinedione frameworks in a highly
stereoselectiveandstereospecificfashionusingBaylis-Hillman
derivatives involving in situ formation of olefin followed by
an intramolecular [4 + 2] cycloaddition reaction.
or microwave irradiation.2a,c,d,9 We envisaged that the
domino Knoevenagel intramolecular hetero-Diels-Alder
reaction can be conducted without the above-mentioned
essential reaction components/conditions which are very
important criteria in green synthesis.
To execute our idea, first we selected methyl (2Z)-2-
(bromomethyl)-3-arylprop-2-enoates, bromo derivatives of
the Baylis-Hillman adducts and salicyladehyde to generate
the required precursor (1) to obtain the desired tetracyclic
chromenopyran pyrimidinedione compounds (4) via a tandem
Knoevenagel intramolecular hetero-Diels-Alder reaction
according to the retrosynthetic strategy shown in Scheme 1.
Scheme 1. Retrosynthetic Strategy for the Synthesis of
Tetracyclic Frameworks with Angular Substitution
Generally domino Knoevenagel intramolecular hetero-
Diels-Alder reactions are carried out with catalyst, solvent
(3) (a) Ceulemens, E.; Voets, M.; Emmers, S.; Uytterhoeven, K.;
Meervelt, L. V.; Dehaen, W. Tetrahedron 2002, 58, 531–544. (b) Dat, N. T.;
Lee, J.; Lee, K.; Hong, Y.; Kim, Y. H.; Lee, J. J. J. Nat. Prod. 2008, 71,
1696–1700. (c) Kwok, D. I.; Farr, R. N.; Daves, D. J. Org. Chem. 1991,
56, 3711–3713. (d) Sinder, B. B.; Lu, Q. J. Org. Chem. 1996, 61, 2839–
2844. (e) Borah, H. N.; Deb, M. L.; Boruah, R. C.; Bhuyan, P. Tetrahedron
Lett. 2005, 46, 3391–3393. (f) Tietze, L. F.; Ott, C.; Geibler, H.; Haunert,
F. Eur. J. Org. Chem. 2001, 1625–1630. (g) Tietze, L. F.; Brand, S.;
Brumby, T.; Fennen, J. Angew. Chem., Int. Ed. 1990, 29, 665–667. (h)
Sinder, B. B.; Lu, Q. J. Org. Chem. 1994, 59, 8065–8070.
(4) (a) Tietze, L. F.; Beifuss, U.; Lokos, M.; Matthias, R.; Gohrt, A.;
Scheldrick, G. M. Angew. Chem., Int. Ed. 1990, 29, 527–529. (b) Lee, Y. R.;
Kim, Y. M.; Kim, S. H. Tetrahedron 2009, 65, 101–108. (c) Sabitha, G.;
Reddy, E. V.; Fatima, N.; Yadav, J. S.; Krishna, K. V. S. R.; Kunwar,
A. C. Synthesis 2004, 1150–1154. (d) Tietze, L. F.; Bachmann, J.;
Wichmann, J.; Burkhardt, O. Synthesis 1994, 1185–1194.
(5) (a) Heidelberger, C. In Pyrimidine and Pyrimidine Antimetabolites
in Cancer Medicine; Holland, J. F., Frei, E., Eds.; Lea and Febiger:
Philadelphia, 1984; pp 801-807. (b) Mitsuya, H.; Weinhold, K. J.; Furman,
P. A.; St Clair, M. H.; Lehrman, S. N.; Gallo, R. C.; Bolognesi, D.; Barry,
D. W.; Broder, S. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 7096–7100. (c)
Griengl, H.; Bodenteich, M.; Hayden, W.; Wanek, E.; Streicher, W.; Stutz,
P.; Bachmayer, H.; Ghazzouli, I.; Rosenwirth, B. J. Med. Chem. 1985, 28,
1679–1684. (d) Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker,
R. T.; Balzarini, J.; DeClercq, E. J. Med. Chem. 1989, 32, 2507–2509. (e)
Baba, M.; Tanaka, H.; DeClercq, E.; Pauwels, R.; Balzarini, J.; Schols, D.;
Nakashima, H.; Perno, C. F.; Walker, R. T.; Miyasaka, T. Biochem. Biophys.
Res. Commun. 1989, 165, 1375–1381.
To prepare the desired tetracyclic chromenopyran pyrim-
idinedione compound (4), we first treated N,N-dimethylbar-
bituric acid and the Baylis-Hillman derivative 1a8a with a
catalytic amount of ethylenediammonium diacetate (EDDA)
catalyst in toluene under reflux temperature for 6 h. However,
the reaction did not provide the anticipated product (4). The
reaction was carried out with other catalysts such as AlCl3,
BF3(OEt)2, and cerium(IV) ammonium nitrate (CAN), but
they too failed to provide the desired product (Table 1, entries
1-4).
However, best results were obtained when the Baylis-
Hillman derivative 1a melted with N,N-dimethylbabituric
acid (2) in a round-bottom flask at 180 °C for 1 h in solvent
and catalyst-free conditions, yielding the desired angularly
substituted (ester moiety) tetracyclic chromenopyran pyri-
midinedione 4a in 98% yield without column chromatog-
raphy purification (pure product obtained after washing with
ethylacetate and hexane mixture in a 1:49 ratio). Decreasing
(6) (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. ReV. 2003,
103, 811–891. (b) Declerck, V.; Martinez, J.; Lamaty, F. Chem. ReV. 2009,
109, 1–48. (c) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. ReV.
2007, 36, 1581–1588. (d) Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511–
4574. (e) Basavaiah, D.; Rao, P. D.; Hyma, S. R. Tetrahedron 1996, 52,
8001–8062. (f) Ciganek, E. In Org. Reactions; Paquette, L. A., Ed.; Wiley:
New York, 1997; Vol. 51, pp 201-350.
(7) (a) Basavaiah, D.; Rao, J. S.; Reddy, R. J. J. Org. Chem. 2004, 69,
7379–7382. (b) Basavaiah, D.; Krishnamacharyula, M.; Hyma, R. S.; Sarma,
P. K. S.; Kumaragurubaran, N. J. Org. Chem. 1999, 64, 1197–1200. (c)
Basavaiah, D.; Reddy, R. M.; Kumaragurubaran, N.; Sharada, D. S.
Tetrahedron 2002, 58, 3693–3697. (d) Basavaiah, D.; Sarma, P. K. S.
J. Chem. Soc., Chem. Commun. 1992, 955–957. (e) Weichert, A.; Hoffmann,
H. M. R. J. Org. Chem. 1991, 56, 4098–4112. (f) Shanmugam, P.;
Viswambharan, B.; Madhavan, S. Org. Lett. 2007, 9, 4095–4098
.
(8) (a) Bakthadoss, M.; Sivakumar, N.; Sivakumar, G.; Murugan, G.
Tetrahedron Lett. 2008, 49, 820–823. (b) Bakthadoss, M.; Sivakumar, N.
Synlett 2009, 1014–1018. (c) Basavaiah, D.; Bakthadoss, M.; Pandiaraju,
S. Chem. Commun. 1998, 1639–1640. (d) Basavaiah, D.; Bakthadoss, M.;
Jayapal Reddy, G. Synth. Commun. 2002, 35, 689–697. (e) Bakthadoss,
M.; Murugan, G. Synth. Commun. 2008, 38, 3406–3413. (f) Basavaiah, D.;
Bakthadoss, M.; Jayapal Reddy, G. Synthesis 2001, 919–923. (g) Baktha-
doss, M.; Murugan, G. Synth. Commun. 2009, 39, 1290–1298.
(9) (a) Tietze, L. F.; Geissler, H.; Fennen, J.; Brumby, T.; Brand, S.;
Schulz, G. J. Org. Chem. 1994, 59, 182–191. (b) Tietze, L. F.; Zhou, Y.
Angew. Chem., Int. Ed. 1999, 38, 2045–2047. (c) Matiychuk, V. S.; Lesyk,
R. B.; Obushak, M. D.; Gzella, A.; Atamanyuk, D. V.; Ostapiuk, Y. V.;
Kryshchyshyn, A. P. Tetrahedron Lett. 2008, 49, 4648–4651. (d) Khosh-
kholgh, M. J.; Balalaie, S.; Gleiter, R.; Rominger, F. Tetrahedron 2008,
64, 10924–10929. (e) Alonso, S. J.; Braun, A. E.; Ravelo, A. G.; Zarate,
R.; Lopez, M. Tetrahedron 2007, 63, 3066–3074
.
Org. Lett., Vol. 11, No. 19, 2009
4467