Sialylation with Silylene/Oxazolidinone Double-Locked Sialic Acids
ficient global minimum when the structure did not reach a gradient
to Ͻ0.05 kJÅ–1 mol–1 by C-search.
Supporting Information (see footnote on the first page of this arti-
cle): Synthetic procedures, spectroscopic data, and 1H and 13C
NMR spectra of compounds 1–3, 5, 9–13, and 17–24.
Acknowledgments
We thank Dr. Ishiwata (RIKEN) for MM and MD calculations.
This work was supported by the Science Frontier Project of Kana-
gawa University and the Japan Society for the Promotion of Sci-
ence by Grants-in-Aid for Scientific Research for Young Scientists
B (No. 20710171 to S. H.). We thank Dr. S. Akai (Kanagawa Uni-
versity) for helpful discussions. We thank A. Takahashi, K. Ueno,
and I. Hara for their technical assistance.
[1] Recent reviews on sialylation reactions: a) G.-J. Boons, A. V.
Demchenko, Chem. Rev. 2000, 100, 4539–4565; b) R. L. Hal-
comb, M. D. Chappell, J. Carbohydr. Chem. 2002, 21, 723–768;
c) H. Ando, A. Imamura, Trends Glycosci. Glycotechnol. 2004,
16, 293–303; d) C. De Meo, U. Priyadarshani, Carbohydr. Res.
2008, 343, 1540–1552.
[2] a) O. Kanie, M. Kiso, A. Hasegawa, J. Carbohydr. Chem. 1988,
7, 501–506; b) R. R. Schmidt, M. Behrendt, A. Toepfer, Synlett
1990, 694–696.
[3] a) T. Takahashi, H. Tsukamoto, H. Yamada, Tetrahedron Lett.
1997, 38, 8223–8226; b) A. Ishiwata, Y. Ito, Synlett 2003, 1339–
1343; c) J. M. Haberman, D. Y. Gin, Org. Lett. 2001, 3, 1665–
1668; d) J. M. Haberman, D. Y. Gin, Org. Lett. 2003, 5, 2539–
2542; e) S. Hanashima, S. Akai, K. Sato, Tetrahedron Lett.
2008, 49, 5111–5114.
Scheme 2. Plausible reaction mechanism and global minimum
structure of compound 2. The results of MD simulation within
5 kJmol–1 were overviewed.
[4] a) K. Okamoto, T. Kondo, T. Goto, Tetrahedron 1987, 43,
5909–5918; b) K. Okamoto, T. Kondo, T. Goto, Tetrahedron
1987, 43, 5919–5928.
[5] a) Y. Ito, M. Numata, M. Sugimoto, T. Ogawa, J. Am. Chem.
Soc. 1989, 111, 8508–8510; b) T. Ercegovic, G. Magnusson, J.
Org. Chem. 1995, 60, 3378–3384; c) V. Martichonok, G. M.
Whitesides, J. Am. Chem. Soc. 1996, 118, 8187–8191; d) C. J.
Castro-Palomino, E. Y. Tsvetkov, R. R. Schmidt, J. Am. Chem.
Soc. 1998, 120, 5434–5440.
[6] a) A. V. Demachenko, G.-J. Boons, Tetrahedron Lett. 1998, 39,
3065–3068; b) C. De Meo, A. V. Demachenko, G.-J. Boons, J.
Org. Chem. 2001, 66, 5490–5497; c) C.-S. Yu, K. Niikura, C.-
C. Lin, C.-H. Wong, Angew. Chem. Int. Ed. 2001, 40, 2900–
2903; d) H. Ando, Y. Koike, H. Ishida, M. Kiso, Tetrahedron
Lett. 2003, 44, 6883–6886; e) H. Tanaka, M. Adachi, T. Takah-
ashi, Chem. Eur. J. 2005, 11, 849–862; f) K. Ikeda, K. Miyam-
oto, M. Sato, Tetrahedron Lett. 2007, 48, 7431–7435; g) S.
Tanaka, T. Goi, K. Tanaka, K. Fukase, J. Carbohydr. Chem.
2007, 26, 369–394.
[7] a) H. Tanaka, Y. Nishiura, T. Takahashi, J. Am. Chem. Soc.
2006, 128, 7124–7125; b) D. Crich, W. Li, J. Org. Chem. 2007,
72, 2387–2391; c) M. D. Farri, C. De Meo, Tetrahedron Lett.
2007, 48, 1225–1227; d) D. Crich, W. Li, J. Org. Chem. 2007,
72, 7794–7797.
Conclusions
We here described efficient sialylation reactions in
CH2Cl2 using silylene/oxazolidinone double-locked sialic
acid building blocks 1 and 2. Initially, building blocks 1
and 2 were prepared from known oxazolidinone 4. Then,
sialylation reactions using building blocks 1–3 were demon-
strated in CH2Cl2, with no nitrile-supported system. In
comparison to the sialylation results obtained using 3, the
results for building blocks 1 and 2, which have additional
C5,7-DTBS lock, provided significant α-selectivities. In the
sialylation reaction toward the C6-OH group of galactose
acceptors, double-locked 1 and 2 as well as simple oxazolid-
inone-locked 3 provided the desired α-anomer with excel-
lent α-selectivity. When double-locked building blocks, es-
pecially compound 2, were submitted for sialylation with
the C3-OH group of galactosides 14 or 15, desired coupling
products were obtained with excellent α-selectivity.
[8] a) H. Tanaka, Y. Tateno, Y. Nishiura, T. Takahashi, Org. Lett.
2008, 10, 5597–5600; b) H. Tanaka, Y. Nishiura, T. Takahashi,
J. Am. Chem. Soc. 2008, 130, 17244–17245.
[9] a) A. Ishiwata, H. Akao, Y. Ito, Org. Lett. 2006, 8, 5525–5528;
b) A. Imamura, A. Kimura, H. Ando, H. Ishida, M. Kiso,
Chem. Eur. J. 2006, 12, 8862–8870; c) M. Joe, Y. Bai, R. C.
Nacario, T. L. Lowary, J. Am. Chem. Soc. 2007, 129, 9885–
9901.
Experimental Section
Experimental details can be found in the Supporting Information.
Molecular modeling was performed with MacroModel ver8.1
through conformational search program. Conformational profiles
were generated by 2000 step Monte Carlo (MCMM) searches with
MMFFs force fields in CHCl3 and then reminimized by multiple
minimization program with the force fields in order to give a suf-
[10] a) J. Haverkamp, T. Spoormaker, L. Dorland, J. F. G. Vliegen-
thart, R. Schauer, J. Am. Chem. Soc. 1979, 101, 4851–4853; b)
Eur. J. Org. Chem. 2009, 4215–4220
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4219