F. Gruppi et al. / Tetrahedron 65 (2009) 7289–7295
7295
8H, ArCHCH2), 1.22 (m, 32H, CH2CH2CH2CH2CH2CH3), 0.90 (t, 12H,
CH2CH3, J¼7.3 Hz); ESI MS (m/z): 1278.6 [MH]þ, [M¼C84H84N4O8].
and 31P NMR spectra were recorded. 1H NMR (CD2Cl2, 300 MHz):
d
¼8.89 (d, 4H, PyHo), 7.73–7.30 (m, 92H, PPh2þNCArHo), 7.13–7.07
(m, 12H, NCArHm), 6.98 (d, 4H, PyHm), 5.47 (d, 4H, OCHinHoutO), 5.05
(d, 4H, OCHinHoutO), 4.80–4.72 (m, 8H, ArCH), 4.28–4.26 (m, 4H,
OCHinHoutO), 4.08 (d, 4H, OCHinHoutO), 3.24 (m, 8H, dppp), 2.90 (m,
8H, dppp), 2.30 (m, 24H, dpppþArCHCH2), 1.42–1.34 (m, 64H,
CH2CH2CH2CH2CH2CH3), 0.93 (br t, 24H, CH2CH3); 31P NMR (CD2Cl2,
4.6. Stepwise self-assembly of Pt-hemicage (6) and Pt cage (8)
To a solution of 3.2 mg of 1 (5.0ꢃ10ꢀ3 M) in CD2Cl2 (0.4 mL) and
CD3NO2 (0.1 mL) in the NMR tube 1.1 mg of Pt(dppp)OTf2 was
added to give hemicage 6 and 1H NMR and 31P NMR spectra were
162 MHz):
d¼15.36, 11.82, ꢀ15.48 (JP–Pt¼3189 Hz).
recorded. 1H NMR (CD2Cl2þCD3NO2, 300 MHz):
d
¼8.82 (d, 4H,
PyHo), 7.76–6.98 (m, 48H, PPh2þNCArHoþPyHmþNCArHm), 5.49 (d,
4H, OCHinHoutO), 5.07 (d, 4H, OCHinHoutO), 4.80–4.78 (m, 8H, ArCH),
4.20 (d, 4H, OCHinHoutO partially under residual solvent peak), 4.10
(d, 4H, OCHinHoutO), 2.29 (m, 16H, ArCHCH2), 1.29 (m, 64H,
CH2CH2CH2CH2CH2CH3), 0.90 (br t, 24H, CH2CH3); 31P NMR
(CD2Cl2þCD3NO2, 162 MHz): ꢀ15.60 ppm (JP–Pt¼3033 Hz).
4.8.2. One-pot procedure
To a solution of 3.5 mg of 1 (5.4ꢃ10ꢀ3 M) in CD2Cl2 (0.4 mL) and
CD3NO2 (0.1 mL) in the NMR tube 1.25 mg of Pt(dppp)OTf2, and
3.3 mg of Pd(dppp)OTf2 were added. 1H NMR and 31P NMR spectra
were recorded. 1H NMR (CD2Cl2þCD3NO2, 300 MHz):
¼8.82 (d, 4H,
d
PyHo), 7.72–7.25 (m, 92H, PPh2þNCArHo), 7.07–6.94 (m, 16H,
PyHmþNCArHm), 5.46 (d, 4H, OCHinHoutO), 5.03 (d, 4H, OCHinHoutO),
4.79–4.74 (m, 8H, ArCH), 4.20 (d, 4H, OCHinHoutO partially under
residual solventpeak), 4.07 (d, 4H, OCHinHoutO), 3.23–2.83 (m, dppp),
2.30 (m, 16H, ArCHCH2), 1.40–1.29 (m, 64H, CH2CH2CH2CH2CH2CH3),
0.87 (br t, 24H, CH2CH3); 31P NMR (CD2Cl2þCD3NO2, 162 MHz):
An additional 3.4 mg of Pt(dppp)OTf2 was added to same solu-
tion and 1H NMR and 31P NMR spectra were recorded again. 1H
NMR (CD2Cl2þCD3NO2, 300 MHz): ¼8.81 (d, 4H, PyHo), 8.61 (d,
d
12H, PyHo), 7.82–6.98 (m, 416H, PPh2þNCArHmþNCArHo), 6.92 (d,
4H, PyHm), 6.72 (d, 12H, PyHm), 5.55–5.42 (m, 16H, OCHinHoutO),
5.08 (d, 8H, OCHinHoutO), 4.98 (d, 8H, OCHinHoutO), 4.75–4.65
(m, 32H, ArCH), 4.26–4.22 (m, 16H, OCHinHoutO), 4.23 (d, 8H,
OCHinHoutO partially under residual solvent peak), 4.18 (d, 16H,
OCHinHoutO), 2.90 (m, 64H, dppp), 2.75 (m, 32H, dppp), 2.29 (m,
64H, ArCHCH2), 1.29 (m, 256H, CH2CH2CH2CH2CH2CH3), 0.90 (br t,
96H, CH2CH3); 31P NMR (CD2Cl2þCD3NO2, 162 MHz): ꢀ15.60, ꢀ10.02
(JP–Pt¼3444 Hz).
d
¼15.84, 12.35, ꢀ15.07 (JP–Pt¼3075 Hz).
ESI MS (m/z): 2803.51 [(Mꢀ2OTf)]2þ, [M¼C284H272F24N8O40
-
Pd3P8PtS8].
Acknowledgements
This work was supported by the EU through NoE MAGMANet (3-
NMP 515767-2). The instrumental facilities at the Centro Inter-
ESI MS (m/z): 2938.2 [(Mꢀ2OTf)]2þ, [M¼C284H272F24N8O40
-
P8Pt4S8].
`
facolta di Misure G. Casnati of the University of Parma were utilized.
4.7. Stepwise self-assembly of Pd hemicage (7) and Pd cage (9)
References and notes
To a solution of 3.1 mg of 1 (4.85ꢃ10ꢀ3 M) in CD2Cl2 (0.4 mL) and
CD3NO2 (0.1 mL) in the NMR tube 1 mg of Pd(dppp)OTf2 was added
to give hemicage 7 and 1H NMR and 31P NMR spectra were recor-
1. Pirondini, L.; Dalcanale, E. In Modern Supramolecular Chemistry, Diedrich, F., Stang,
P.J., Tykwinski, R.R., Eds.; Wiley-VCH: Weinhem, 2008; Chapter 7, pp 233–276.
2. (a) Harrison, R. G.; Burrows, J. L.; Hansen, L. D. Chem.dEur. J. 2005, 11, 2881–
2888; (b) Haino, T.; Kobayashi, M.; Fukazawa, Y. Chem.dEur. J. 2006, 12, 3310–
3319.
3. (a) Caulder, D. L.; Powers, K. N.; Parac, T. N.; Raymond, K. N. Angew. Chem., Int.
Ed. 1998, 37, 1840–1843; (b) Fochi, F.; Jacopozzi, P.; Wegelius, E.; Rissanen, K.;
Cozzini, P.; Marastoni, E.; Fisicaro, E.; Manini, P.; Fokkens, R.; Dalcanale, E. J. Am.
Chem. Soc. 2001, 123, 7539–7552; (c) Fujita, M.; Yoshizawa, M. In Modern Su-
pramolecular Chemistry, Diedrich, F., Stang, P.J., Tykwinski, R.R., Eds.; Wiley-
VCH: Weinhem, 2008; Chapter 8, pp 277–313.
4. (a) Chen, J.; Ko¨ner, S.; Craig, S. L.; Rudkevich, D. M.; Rebek, J., Jr. Nature 2002,
415, 385–386; (b) Yoshizawa, M.; Sato, N.; Fujita, M. Chem. Lett. 2005, 34, 1392–
1393.
5. Koblenz, T. S.; Dekker, H. L.; de Koster, C. G.; van Leeuwen, P. W. N. M.; Reek,
J. N. H. Chem. Commun. 2006, 1700–1702.
6. Rudkevich, D. M. Angew. Chem., Int. Ed. 2004, 43, 558–571.
7. (a) Warmuth, R. Eur. J. Org. Chem. 2001, 423–437; (b) Yoshizawa, M.; Kusukawa,
T.; Fujita, M.; Yamaguchi, K. J. Am. Chem. Soc. 2000, 122, 6311–6312.
8. Yamanaka, M.; Yamada, Y.; Sei, Y.; Yamaguchi, K.; Kobayashi, K. J. Am. Chem. Soc.
2006, 128, 1531–1539.
9. For the self-assembly of heterocages on surfaces, see: (a) Menozzi, E.; Pinalli, R.;
Speets, E. A.; Ravoo, B. J.; Dalcanale, E.; Reinhoudt, D. N. Chem.dEur. J. 2004, 10,
2199–2206; (b) Busi, M.; Laurenti, M.; Condorelli, G. G.; Motta, A.; Favazza, M.;
ded. 1H NMR (CD2Cl2þCD3NO2, 300 MHz):
¼8.77 (d, 4H, PyHo),
d
7.67–7.30 (m, 32H, PPh2þNCArHo), 7.06 (d, 12H, NCArHm), 6.94 (d,
4H, PyHm), 5.49 (d, 4H, OCHinHoutO), 5.05 (d, 4H, OCHinHoutO), 4.81–
4.75 (m, 8H, ArCH), 4.22–4.19 (m, 4H, OCHinHoutO, partially under
residual solvent peak), 4.08 (d, 4H, OCHinHoutO), 3.12–2.91 (dppp
signals),
2.32
(m,
16H,
ArCHCH2),
1.29
(m,
64H,
CH2CH2CH2CH2CH2CH3), 0.87 (br t, 24H, CH2CH3); 31P NMR:
(CD2Cl2þCD3NO2, 162 MHz): ¼6.14 ppm.
d
An additional 2.9 mg of Pd(dppp)OTf2 was added to same so-
lution and 1H NMR and 31P NMR spectra were recorded again. 1H
NMR (CD2Cl2þCD3NO2, 300 MHz): ¼8.81 (d, 4H, PyHo), 8.59 (d,
d
12H, PyHo), 7.84–6.89 (m, PPh2þNCArHmþNCArHoþPyHm), 5.51–
5.46 (m, 16H, OCHinHoutO), 5.07–4.99 (m, 16H, OCHinHoutO), 4.77–
4.66 (m, 32H, ArCH), 4.19–4.07 (m, 32H, OCHinHoutO partially under
residual solvent peak), 2.90–2.75 (m, three signals of dppp), 2.29
(m, 64H, ArCHCH2), 1.40–1.29 (m, 256H, CH2CH2CH2CH2CH2CH3),
0.87 (br t, 96H, CH2CH3); 31P NMR (CD2Cl2þCD3NO2, 162 MHz):
`
Fragala, I. L.; Montalti, M.; Prodi, L.; Dalcanale, E. Chem.dEur. J. 2007, 13, 6891–
6898.
2
2
d
¼15.77, 12.41, 11.50 (d, JP–P¼25 Hz), 10.90 (d, JP–P¼25 Hz), 6.14,
10. Cuminetti, N.; Ebbing, M. H. K.; Prados, P.; de Mendoza, J.; Dalcanale, E. Tetra-
hedron Lett. 2001, 42, 527–530.
11. Pinalli, R.; Cristini, V.; Sottili, V.; Geremia, S.; Campagnolo, M.; Caneschi, A.;
Dalcanale, E. J. Am. Chem. Soc. 2004, 126, 6516–6517.
12. Tunstad, L. M.; Tucker, J. A.; Dalcanale, E.; Weiser, J.; Bryant, J. A.; Sherman, C. J.;
Helgeson, R. C.; Knobler, C. B.; Cram, D. J. Org. Chem. 1989, 54, 1305–1312.
13. Tanaka, Y.; Sasada, A.; Fujita, Y. Proceedings of 9th International Conference on
Calixarene Chemistry, 2007; p 96.
4.91 ppm.
ESI MS (m/z): 2760.16 [(Mꢀ2OTf)]2þ, [M¼C284H272F24N8O40
-
P8Pd4S8].
4.8. Self-assembly of heteronuclear cage (10)
4.8.1. Stepwise procedure
´
14. Roman, E.; Peinador, C.; Mendoza, S.; Kaifer, A. E. J. Org. Chem. 1999, 64, 2577–
2578.
To a solution of 3.2 mg of 1 (5ꢃ10ꢀ3 M) in CD2Cl2 (0.5 mL) in the
NMR tube 1.1 mg of Pt(dppp)OTf2 was added to form Pt-hemicage
6. Pd(dppp)OTf2 (3 mg) was added to same solution and 1H NMR
15. Zuccaccia, D.; Pirondini, L.; Pinalli, R.; Dalcanale, E.; Macchioni, A. J. Am. Chem.
Soc. 2005, 127, 7025–7032.
16. Menozzi, E.; Busi, M.; Massera, C.; Ugozzoli, F.; Zuccaccia, D.; Macchioni, A.;
Dalcanale, E. J. Org. Chem. 2006, 71, 2617–2624.