pubs.acs.org/joc
SCHEME 1. [2 þ 2] and [4 þ 2] Cycloadditions Reported
Enantioselective Synthesis of Aza-β-lactams via
NHC-Catalyzed [2 þ 2] Cycloaddition of Ketenes
with Diazenedicarboxylates
Xue-Liang Huang, Xiang-Yu Chen, and Song Ye*
Beijing National Laboratory for Molecular Sciences, CAS
Key Laboratory of Molecular Recognition and Function,
Institute of Chemistry, Chinese Academy of Sciences, Beijing
100190, China
Received July 30, 2009
contributors for the synthesis and application of aza-β-
lactams.6 Recently, Berlin and Fu reported the first enantio-
selective [2 þ 2] cycloaddition of ketenes with diazenedicar-
boxylates catalyzed by their planar-chiral 4-pyrrolidino-
pyridine derivatives (Scheme 1a).7 Interestingly, we found
that the reaction of ketenes and N-benzoyldiazenes catalyzed
by chiral N-heterocyclic carbenes (NHCs) gave predomi-
nately the formal [4 þ 2] cycloaddition of ketenes in high
yield with good enantioselectivities (Scheme 1b).8
The two reaction modes ([4 þ 2] and [2 þ 2]) prompt us to
think whether the catalysts or the different substituents of
diazenes control the reaction modes. To answer this ques-
tion, two more experiments were carried out. It was found
that NHC 2a0, generated freshly from the precursor 2a and
Cs2CO3, could catalyze the reaction of phenyl(ethyl)ketene
(3a) and diethyl diazenedicarboxylate (4a) to give [2 þ 2]
cycloaddition product in 38% yield with 87% ee, and no
[4 þ 2] cycloaddition product was detected (Scheme 2a). The
other experiment showed that DMAP-catalyzed reaction of
ketene 3a and N-phenyl-N0-benzoyldiazene gave the [4 þ 2]
cycloaddition product (Scheme 2b).
N-Heterocyclic carbenes were found to be efficient
catalysts for the formal [2 þ 2] cycloaddition of aryl-
(alkyl)ketenes and diazenedicarboxylates to give the cor-
responding aza-β-lactams in good yields with up to 91%
ee. The N-substituent (carboxylate vs benzoyl) of dia-
zenes played an important role to control the reaction
modes (formal [2 þ 2] vs [4 þ 2] cycloaddtions).
As the aza analogues of β-lactams, aza-β-lactams show
some interesting biological activities1 and are useful inter-
mediates for the synthesis of R-amino acids and heterocyclic
compounds.2 In 1925, Ingold and Weaver reported the first
[2 þ 2] cycloaddition of ketenes and diazenes to give aza-β-
lactams.3-5 Lately, Taylor and co-workers were the main
(1) (a) Morioka, H.; Takezawa, M.; Shibai, H.; Okawara, T.; Furukawa,
M. Agric. Biol. Chem. 1986, 50, 1757–1764. (b) Abdel-Ghaffar, S. A.;
Mpango, G. B.; Ismail, M. A.; Nanyonga, S. K. Boll. Chim. Farm. 2002,
141, 389–393.
For the reactions catalyzed by NHC, the reaction mode is
changed from [4 þ 2] to [2 þ 2] when the diazene is changed
from N-benzoyldiazene to diazenedicarboxylate (Scheme 1b vs
(2) For reviews of the synthesis of R,R-disubstituted R-amino acids, see:
€
(a) Vogt, H.; Brase, S. Org. Biomol. Chem. 2007, 5, 406–430. (b) Cativiela, C.;
Diaz-de-villegas, M. D. Tetrahedron: Asymmetry 2007, 18, 569–623.
(3) Ingold, C. K.; Weaver, S. D. J. Chem. Soc. 1925, 127, 378–387.
(4) For reviews of ketene chemistry, see: (a) Tidwell, T. T. Ketenes; Willey-
Interscience: New York, 2006. (b) Tidwell, T. T. Angew. Chem., Int. Ed. 2005, 44,
5778–5 785. (c) Tidwell, T. T. Eur. J. Org. Chem. 2006, 563–576.
(5) For selective examples of R-amination of carbonyl compounds, see:
(a) List, B. J. Am. Chem. Soc. 2002, 124, 5656–5657. (b) Bogevig, A.; Juhl, K.;
Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2002, 41, 1790–1793. (c) Kumaragurubaran, N.; Juhl, K.; Zhuang, W.;
Bogevig, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2003, 125, 6254–6255.
(d) Marigo, M.; Juhl, K.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42,
1367–1369. (e) Saaby, S.; Bella, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004,
126, 8120–8121. (f) Hasegawa, Y.; Watanabe, W.; Gridnev, I. D.; Ikariya, T.
J. Am. Chem. Soc. 2008, 130, 2158–2159. (g) He, R.; Wang, X.; Hashimoto,
T.; Maruoka, K. Angew. Chem., Int. Ed. 2008, 47, 9466–9468.
(6) (a) Taylor, E. C.; Clemens, R. J.; Davies, H. M. L.; Haley, N. F. J. Am.
Chem. Soc. 1981, 103, 7659–7660. (b) Taylor, E. C.; Davies, H. M. L.;
Clemens, R. J.; Yanagisawa, H.; Haley, N. F. J. Am. Chem. Soc. 1981, 103,
7660–7661. (c) Taylor, E. C.; Haley, N. F.; Clemens, R. J. J. Am. Chem. Soc.
1981, 103, 7743–7752. (d) Taylor, E. C.; Clemens, R. J.; Davies, H. M. L. J.
Org. Chem. 1983, 48, 4567–4571. (e) Taylor, E. C.; Davies, H. M. L.; Lavell,
W. T.; Jones, N. D. J. Org. Chem. 1984, 49, 2204–2208. (f) Taylor, E. C.;
Davies, H. M. L.; Hinkle, J. S. J. Org. Chem. 1986, 51, 1530–1536. (g) Taylor,
E. C.; Davies, H. M. L. J. Org. Chem. 1986, 51, 1537–1540. (h) Taylor, E. C.;
Hinkle, J. S. J. Org. Chem. 1987, 52, 4107–4110.
(7) Berlin, J. M.; Fu, G. C. Angew. Chem., Int. Ed. 2008, 47, 7048–7050.
(8) Huang, X.-L.; He, L.; Shao, P.-L.; Ye, S. Angew. Chem., Int. Ed. 2009,
48, 192–195.
DOI: 10.1021/jo901656q
r
Published on Web 09/01/2009
J. Org. Chem. 2009, 74, 7585–7587 7585
2009 American Chemical Society