potential is increased above +1.1 V, the TTF+ radical cation
One additional feature of the redox switching in the bistable
pretzelane is worthy of note. Since the CBPQT4+ ring is
tethered covalently to the crown ether ring in the pretzelane,
it exhibits, of necessity, unidirectional reversible switching
behavior between its TTF and DNP recognition sites. In this
respect, it displays a fundamental characteristic exhibited by
very few mechanically interlocked molecules investigated to
date3b with different recognition sites.
ꢀ
is oxidized to the TTF2+ dication. The absorption bands for
the TTF+ radical cation are bleached and a small absorption
ꢀ
peak at 525 nm associated with the CT band between the DNP
unit and the CBPQT4+ ring can be detected. The spectrum
gradually reverts back to its original format when the applied
potential is switched off (E = 0 V) and the sample is allowed
to stand at room temperature for 12 h, indicating that all the
electrochemical redox processes undergone by 1ꢁ4PF6 are fully
reversible.
This research was supported by the Microelectronics
Advanced Research Corporation (MARCO) and its Focus
Center Research Program (FCRP) on Functional Engineered
NanoArchitectonics (FENA).
A series of 1H NMR spectra were recorded in order to
investigate the redox-controllable switching of the CBPQT4+
ring in the bistable pretzelane 1ꢁ4PF6. In the 1H NMR
spectrum (Fig. 3(a)) of 1ꢁ4PF6 recorded in CD3CN at 298 K,
the signals for the heterotopic protons on the TTF unit were
observed at 5.92, 5.98, 6.19, and 6.20 ppm, indicating that the
TTF unit in 1ꢁ4PF6 exists in cis and trans isomeric forms, even
when it is encircled by the CBPQT4+ ring. After addition of
2 equiv. of the oxidant, tris(p-bromophenyl)aminium hexa-
chloroantimonate,7 to the NMR tube, the 1H NMR spectrum
was recorded again (Fig. 3(b)) at 243 K in order to ensure the
stability of the oxidized pretzelane. The signals for the TTF
unit moved downfield to 9.28 ppm, the chemical shift
characteristic of the free TTF2+ dication in the oxidized
version of the pretzelane. Further evidence for the movement
of the CBPQT4+ ring from the oxidized TTF unit to the DNP
unit can be found in the dramatic changes in the chemical
shifts for the DNP protons. The resonances of the DNP
protons around 7–8 ppm experienced large up-field shifts to
2.29 and 2.31 (H-4/8), 5.94 and 5.97 (H-3/7), and 6.24 and
6.27 (H-2/6) ppm, respectively, on account of the shielding
effect of the encircling CBPQT4+ ring. Addition of zinc
powder to the NMR tube led to the reduction of the TTF2+
dication to its neutral form, resulting in the movement of the
CBPQT4+ ring away from the DNP and back to the TTF unit
and the restoration (Fig. 3(c)) of the original 1H NMR
spectrum.
Notes and references
1 (a) M. G. L. van den Heuvel and C. Dekker, Science, 2007, 317,
333–336; (b) J. Bath and A. J. Turberfield, Nat. Nanotechnol., 2007,
2, 275–284.
2 (a) A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier
and J. R. Heath, Acc. Chem. Res., 2001, 34, 433–444;
(b) C. A. Schalley, K. Beizai and F. Vogtle, Acc. Chem. Res.,
¨
2001, 34, 465–476; (c) J.-R. Collin, C. Dietrich-Buchecker,
P. Gavina, M. C. Jimenez-Molero and J.-P. Sauvage, Acc. Chem.
Res., 2001, 34, 477–487; (d) Y. Shirai, J.-F. Morin, T. Sasaki,
J. M. Guerrero and J. M. Tour, Chem. Soc. Rev., 2006, 35,
1043–1055; (e) V. Balzani, A. Credi, S. Silvi and M. Venturi, Chem.
Soc. Rev., 2006, 35, 1135–1149; (f) W. R. Browne and B. L. Feringa,
Nat. Nanotechnol., 2006, 1, 25–35; (g) E. R. Kay, D. A. Leigh and
F. Zerbetto, Angew. Chem., Int. Ed., 2007, 46, 72–191.
3 (a) C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly,
J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, Science,
2000, 289, 1172–1175; (b) D. A. Leigh, J. K. Y. Wong, F. Dehez and
F. Zerbetto, Nature, 2003, 424, 174–179; (c) D. W. Steuerman,
H.-R. Tseng, A. J. Peters, A. H. Flood, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart and J. R. Heath, Angew. Chem., Int.
Ed., 2004, 43, 6486–6491; (d) J. D. Badjic, V. Balzani, A. Credi,
´
S. Silvi and J. F. Stoddart, Science, 2004, 303, 1845–1849;
(e) S. P. Fletcher, F. Dumur, M. M. Pollard and B. L. Feringa,
Science, 2005, 310, 80–82; (f) J. Berna, D. A. Leigh, M. Lubomska,
´
S. M. Mendoza, E. M. Perez, P. Rudolf, G. Teobaldi and
´
F. Zerbetto, Nat. Mater., 2005, 4, 704–710; (g) V. Serreli,
C.-F. Lee, E. R. Kay and D. A. Leigh, Nature, 2007, 445,
523–527; (h) Y.-L. Zhao, I. Aprahamian, A. Trabolsi, N. Erina
and J. F. Stoddart, J. Am. Chem. Soc., 2008, 130, 6348–6350;
(i) Y.-L. Zhao, W. R. Dichtel, A. Trabolsi, S. Saha,
I. Aprahamian and J. F. Stoddart, J. Am. Chem. Soc., 2008, 130,
11294–11296.
4 M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, C. Hamers,
G. Mattersteig, M. Montalti, A. N. Shipway, N. Spencer,
J. F. Stoddart, M. S. Tolley, M. Venturi, A. J. P. White and
D. J. Williams, Angew. Chem., Int. Ed., 1998, 37, 333–337.
5 (a) C. Yamamoto, Y. Okamoto, T. Schmidt, R. Jager and F. Vogtle,
¨
J. Am. Chem. Soc., 1997, 119, 10547–10548; (b) C. Reuter,
¨
A. Mohry, A. Sobanshi and F. Vogtle, Chem.–Eur. J., 2000, 6,
¨
1674–1682; (c) Q. Y. Li, E. Vogel, A. H. Parkam, M. Nieger,
M. Bolte, R. Frohlich, P. Saarenketo, K. Rissanen and F. Vogtle,
¨
¨
Eur. J. Org. Chem., 2001, 4041–4049; (d) Y. Liu, P. A. Bonvallet,
S. A. Vignon, S. I. Khan and J. F. Stoddart, Angew. Chem., Int. Ed.,
2005, 44, 3050–3055; (e) Y. Liu, S. A. Vignon, X. Zhang,
P. A. Bonvallet, S. I. Khan, K. N. Houk and J. F. Stoddart,
J. Org. Chem., 2005, 70, 9334–9344; (f) Y. Liu, S. A. Vignon,
X. Zhang, K. N. Houk and J. F. Stoddart, Chem. Commun., 2005,
3927–3929.
6 J. W. Choi, A. H. Flood, D. W. Steuerman, S. Nygaard,
A. B. Braunschweig, N. N. P. Moonen, B. W. Laursen, Y. Luo,
E. DeIonno, A. J. Peters, J. O. Jeppesen, K. Xu, J. F. Stoddart and
J. R. Heath, Chem.–Eur. J., 2006, 12, 261–279.
7 H.-R. Tseng, S. A. Vignon and J. F. Stoddart, Angew. Chem., Int.
Ed., 2003, 42, 1491–1495.
Fig. 3 Partial 1H NMR spectra of 1ꢁ4PF6 (1.0 mM) recorded in
CD3CN. (a) 1ꢁ4PF6 at 298 K, (b) oxidized 1ꢁ4PF6 at 243 K, and
(c) reduced 1ꢁ4PF6 at 298 K.
ꢂc
This journal is The Royal Society of Chemistry 2009
4846 | Chem. Commun., 2009, 4844–4846