pubs.acs.org/joc
obtained from isothiocyanateacetyl oxazolidinones7 and,
Stereoselective Synthesis of Highly Functionalized
Structures from Lactate-Derived Halo Ketones†
more recently, an azidoacetyl thiazolidinethione.8 In turn,
similar halo carboxylic systems have been also engaged in
such kinds of reactions,5a,9 but few methodologies have
taken advantage of the synthetic potentiality of chiral halo
ketones.10,11 Thus, considering the ability of halides as
leaving groups in SN2-like processes and the high diastereos-
electivity achieved by the aldol reactions of chiral R-hydroxy
ketones,12 we envisaged that parallel substrate-controlled
additions from R0-halo R-silyloxy ketones would afford the
syn-syn halo aldols, which might be subsequently trans-
formed into highly functionalized molecular architectures
(see Scheme 1). Herein we disclose the success of such a
strategy based on the titanium-mediated aldol reactions of
lactate-derived R0-chloro- and R0-bromo-R-tert-butyldi-
methylsilyloxy ketones (R1: Me; R3Si: TBS; X: Cl, Br in
Scheme 1).13
ꢀ
Joaquim Nebot, Pedro Romea,* and Felix Urpı*
´
Departament de Quımica Organica, Universitat de Barcelona,
Martı i Franques 1-11, 08028 Barcelona, Catalonia, Spain
ꢀ
´
ꢁ
felix.urpi@ub.edu; pedro.romea@ub.edu
Received June 3, 2009
The required chloro and bromo ketones (1 and 2, respec-
tively, see Table 1) were prepared from commercially avail-
able ethyl lactate following procedures reported in the
literature.14 With a straightforward and reliable supply of
ketones 1 and 2 in hand, we began to study their titanium-
mediated aldol reactions. Preliminary studies with TiCl4 and
isobutyraldehyde (a) were disappointing. The experimental
Highly diastereoselective (i-PrO)2TiCl2-mediated aldol
reactions from lactate-derived R0-halo R-silyloxy ketones
and subsequent treatment of the resultant aldols with a
wide range of nucleophiles furnishes highly functiona-
lized arrangements useful in natural product syntheses.
(7) For representative examples, see: (a) Evans, D. A.; Weber, A. E.
J. Am. Chem. Soc. 1986, 108, 6757. (b) Boger, D. L.; Colletti, S. L.; Honda,
T.; Menezes, R. F. J. Am. Chem. Soc. 1994, 116, 5607. (c) Herbert, B.; Kim,
I. H.; Kirk, K. L. J. Org. Chem. 2001, 66, 4892. (d) Willis, M. C.; Cutting,
G. A.; Piccio, V. J.-D.; Durbin, M. J.; John, M. P. Angew. Chem., Int. Ed.
2005, 44, 1543.
The stereoselective aldol reaction based on substrates
containing a heteroatom at the enolizable position constitu-
tes a powerful tool for the construction of complex arrange-
ments of functionality and stereochemistry in natural
product syntheses.1 Indeed, the glycolate aldol reactions of
hydroxy ketones,2,3 esters,4 thioesters,5 and imides6 have
been widely used for the synthesis of polyoxygenated struc-
tures, whereas related aminooxygenated arrays have been
ꢁ
(8) Patel, J.; Clave, G.; Renard, P.-Y.; Franck, X. Angew. Chem., Int. Ed.
2008, 47, 4224.
(9) (a) Abdel-Magid, A.; Pridgen, L. N.; Eggleston, D. S.; Lantos, I.
J. Am. Chem. Soc. 1986, 108, 4595. (b) Evans, D. A.; Sjogren, E. B.; Weber,
A. E.; Conn, R. E. Tetrahedron Lett. 1987, 28, 39. (c) Evans, D. A.; Weber,
A. E. J. Am. Chem. Soc. 1987, 109, 7151. (d) Jones, T. K.; Reamer, R. A.;
Desmond, R.; Mills, S. G. J. Am. Chem. Soc. 1990, 112, 2998. (e) Wang,
Y.-C.; Su, D.-W.; Lin, C.-W.; Tseng, H.-L.; Li, C.-L.; Yan, T.-H. J. Org.
Chem. 1999, 64, 6495. (f) Ghosh, A. K.; Kim, J.-H. Org. Lett. 2004, 6, 2725.
(g) Hoover, T. R.; Groeper, J. A.; Parrott, R. W.; Chandrashekar, S. P.;
Finefield, J. M.; Dominguez, A.; Hitchcock, S. R. Tetrahedron: Asymmetry
2006, 17, 1831. (h) Son, J. B.; Hwang, M.-h.; Lee, W.; Lee, D.-H. Org. Lett.
2007, 9, 3897. (i) Yu, D.-S.; Xu, W.-X.; Liu, L.-X.; Huang, P.-Q. Synlett
2008, 1189.
† This paper is dedicated to Prof. Santiago Olivella on the occasion of his 65th
birthday.
(1) For an overview on aldol methodologies for the synthesis of polyke-
tides, see: Schetter, B.; Mahrwald, R. Angew. Chem., Int. Ed. 2006, 45, 7506.
(2) (a) Paterson, I.; Tillyer, R. D. J. Org. Chem. 1993, 58, 4182.
(b) Hayward, C. M.; Yohannes, D.; Danishefsky, S. J. J. Am. Chem. Soc.
1993, 115, 9345. (c) Paterson, I.; Doughty, V. A.; McLeod, M. D.; Triesel-
mann, T. Angew. Chem., Int. Ed. 2000, 39, 1308. (d) Trost, B. M.; Ito, H.;
Silcoff, E. R. J. Am. Chem. Soc. 2001, 123, 3367. (e) Murga, J.; Ruiz, P.;
Falomir, E.; Carda, M.; Peris, G.; Marco, J. A. J. Org. Chem. 2004, 69, 1987.
(f) Evans, D. A.; Glorius, F.; Burch, J. D. Org. Lett. 2005, 7, 3331.
(3) For a review on aldol additions of dihydroxyacetone, see: Markert,
M.; Mahrwald, R. Chem. Eur. J. 2008, 14, 40.
(4) (a) Andrus, M. B.; Soma Sekhar, B. B. V.; Meredith, E. L.; Dalley,
N. K. Org. Lett. 2000, 2, 3035. (b) Dixon, D. J.; Ley, S. V.; Polara, A.;
Sheppard, T. Org. Lett. 2001, 3, 3479. (c) Andrus, M. B.; Soma Sekhar, B. B.
V.; Turner, T. M.; Meredith, E. L. Tetrahedron Lett. 2001, 42, 7197.
(d) Denmark, S. E.; Chung, W.-j. J. Org. Chem. 2008, 73, 4582.
(10) (a) Enders, D.; Hett, R. Synlett 1998, 961. (b) Palomo, C.; Oiarbide,
ꢁ
M.; Sharma, A. K.; Gonzalez-Rego, M. C.; Linden, A.; Garcıa, J. M.;
Gonzalez, A. J. Org. Chem. 2000, 65, 9007.
ꢁ
(11) For organocatalyzed reactions from chloroacetone, see: (a) He, L.;
Tang, Z.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Tetrahedron 2006,
ꢁ
62, 346. (b) Guillena, G.; Hita, M. C.; Najera, C. Tetrahedron: Asymmetry
2007, 18, 1272.
(12) For seminal contributions on stereoselective aldol reactions based on
chiral R-hydroxy ketones, see: (a) Masamune, S.; Choy, W.; Kerdesky, F. A.
J.; Imperiali, B. J. Am. Chem. Soc. 1981, 103, 1566. (b) Van Draanen, N. A.;
Arseniyadis, S.; Crimmins, M. T.; Heathcock, C. H. J. Org. Chem. 1991, 56,
2499. (c) Paterson, I.; Wallace, D. J.; Velazquez, S. M. Tetrahedron Lett.
1994, 33, 9083.
(13) For titanium-mediated aldol reactions from lactate-derived ethyl
and methyl ketones, see: (a) Solsona, J. G.; Romea, P.; Urpı, F.; Vilarrasa, J.
Org. Lett. 2003, 5, 519. (b) Solsona, J. G.; Romea, P.; Urpı, F. Tetrahedron
Lett. 2004, 45, 5379. (c) Nebot, J.; Figueras, S.; Romea, P.; Urpı, F.; Ji, Y.
Tetrahedron 2006, 62, 11090. (d) Rodrıguez-Cisterna, V.; Villar, C.; Romea,
P.; Urpı, F. J. Org. Chem. 2007, 72, 6631. (e) Pellicena, M.; Solsona, J. G.;
Romea, P.; Urpı, F. Tetrahedron Lett. 2008, 49, 5265.
(5) (a) Gennari, C.; Vulpetti, A.; Pain, G. Tetrahedron 1997, 53, 5909.
(b) Kobayashi, S.; Horibe, M. Chem. Eur. J. 1997, 3, 1472. (c) Fanjul, S.;
Hulme, A. N. J. Org. Chem. 2008, 73, 9788.
(6) For representative examples, see: (a) Evans, D. A.; Gage, J. R.;
Leighton, J. L; Kim, A. S. J. Org. Chem. 1992, 57, 1961. (b) Evans, D. A.;
Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990,
112, 7001. (c) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121,
5653. (d) Li, Z.; Wu, R.; Michalczyk, R.; Dunlap, R. B.; Odom, J. D.; Silks,
L. A. J. Am. Chem. Soc. 2000, 122, 386. (e) Crimmins, M. T.; McDougall, P.
J. Org. Lett. 2003, 5, 591. (f) Zhang, W.; Carter, R. G.; Yokochi, A. F. T. J.
Org. Chem. 2004, 69, 2569. (g) Owen, R. M.; Roush, W. R. Org. Lett. 2005, 7,
3941. (h) Vincent, G.; Mansfield, D. J.; Vors, J.-P.; Ciufolini, M. A. Org. Lett.
2006, 8, 2791. (i) Crimmins, M. T.; Ellis, J. M. J. Org. Chem. 2008, 73, 1649.
~
ꢁ
(14) (a) Barluenga, J.; Baragana, B.; Alonso, A.; Concellon, J. M.
J. Chem. Soc., Chem. Commun. 1994, 969. (b) Kaluza, Z.; Kazimierski, A.;
Lewandowski, K.; Suwinska, K.; Szczesna, B.; Chmielewski, M. Tetrahedron
2003, 59, 5893.
7518 J. Org. Chem. 2009, 74, 7518–7521
Published on Web 09/04/2009
DOI: 10.1021/jo9010798
r
2009 American Chemical Society