C O M M U N I C A T I O N S
Table 1. Photophysical Data for Ir(III) Corroles in Toluene
ligand. We also have shown that substitutions on the corrole
framework can tune the redox and photophysical properties as well
as the solubility behavior of these molecules over a very wide range.
We intend to employ these and related Ir(III) corroles in experiments
that require tunable near-IR phosphors.
Solutionsa
1-Ir(tma)2
1b-Ir(tma)2
1-Ir(py)2
b
Φph
3.3 × 10-4
788/0.220
0.170
786/2.77
1.5 × 103
4.54 × 106
3.9 × 10-3
795/1.19
0.760
786/4.72
3.28 × 103
8.4 × 105
1.2 × 10-2
792/4.91
0.380
793/7.69
2.44 × 103
2.0 × 105
λAr (nm)/τAr (µs)
c
τair (µs)
Acknowledgment. This work was supported by the NSF Center
for Chemical Innovation (CCI Powering the Planet, Grants CHE-
0802907 and CHE-0947829), the US-Israel BSF, CCSER (Gordon
and Betty Moore Foundation), and the Arnold and Mabel Beckman
Foundation.
λ77K (nm)/τ77K (µs)
kr (s-1
)
)
knr (s-1
a At 298 K unless noted otherwise. b Luminescence quantum yields
were standardized against free-base tetraphenylporphyrin (Φf ) 0.13 in
toluene solution at 298 K). c Measured under atmospheric conditions.
Supporting Information Available: Additional experimental details.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) Zenkevich, E.; Sagun, E.; Knyukshto, V.; Shulga, A.; Mironov, A.;
Efremova, O.; Bonnett, R.; Phinda Songca, S.; Kassem, M. J. Photochem.
Photobiol., B 1996, 33, 171–180.
(2) Papkovsky, D. B.; Ponomarev, G. V.; Trettnak, W.; O’Leary, P. Anal. Chem.
1995, 67, 4112–4117.
(3) (a) Kwong, R. C.; Sibley, S.; Baldo, M. A.; Forrest, S. R.; Thompson,
M. E. Chem. Mater. 1999, 11, 3709–3713. (b) Antipas, A.; Dolphin, D.;
Gouterman, M.; Johnson, E. C. J. Am. Chem. Soc. 1978, 100, 7705–7709.
(4) (a) Sun, Y.; Borek, C.; Hanson, K.; Djurovich, P. I.; Thompson, M. E.;
Brooks, J.; Brown, J. J.; Forrest, S. R. Appl. Phys. Lett. 2007, 90, 213503/
1–213503/3. (b) Wiehe, A.; Stollberg, H.; Runge, S.; Paul, A.; Senge, M. O.;
Roder, B. J. Porphyrins Phthalocyanines 2001, 5, 853–860.
(5) Tait, C. D.; Holten, D.; Barley, M. H.; Dolphin, D.; James, B. R. J. Am.
Chem. Soc. 1985, 107, 1930–1934, and references therein.
(6) (a) Okun, Z.; Kupershmidt, L.; Amit, T.; Mandel, S.; Bar-Am, O.; Youdim,
M. B. H.; Gross, Z. ACS Chem. Biol. 2009, 4, 910–914. (b) Agadjanian,
H.; Ma, J.; Rentsendorj, A.; Valluripalli, V.; Hwang, J. Y.; Mahammed,
A.; Farkas, D. L.; Gray, H. B.; Gross, Z.; Medina-Kauwe, L. K. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 6100–6105.
Figure 3. UV-vis spectra of Ir(III) corroles in toluene solution at 298 K.
nonpolar, so inclusion of a solvent dielectric term is not appropriate).
The strong negative correlation (R2 > 0.9) between the polarizability
of the solvent and the energy of the Soret transition indicates that
in each case the excited state is substantially more polar than the
ground state.18 The Q-band maxima display a similar trend. The
striking solvatochromic behavior of Ir(III) corroles potentially could
be exploited in optical sensors as well as other applications requiring
solvent-based tuning of absorption and emission properties.
(7) Agadjanian, H.; Weaver, J. J.; Mahammed, A.; Rentsendorj, A.; Bass, S.;
Kim, J.; Domchowski, I. J.; Margalit, R.; Gray, H. B.; Gross, Z.; Medina-
Kauwe, L. K. Pharm. Res. 2006, 23, 367–377.
(8) Weaver, J. J.; Sorasaenee, K.; Sheikh, M.; Goldschmidt, R.; Tkachenko,
E.; Gross, Z.; Gray, H. B. J. Porphyrins Phthalocyanines 2004, 8, 76–81.
(9) Hwang, J. Y.; Agadjanian, H.; Medina-Kauwe, L. K.; Gross, Z.; Gray,
H. B.; Sorasaenee, K.; Farkas, D. L. SPIE 2008, 6859, 68590G.
(10) (a) Palmer, J. H.; Day, M. W.; Wilson, A. D.; Henling, L. M.; Gross, Z.;
Gray, H. B. J. Am. Chem. Soc. 2008, 130, 7786–7787. (b) Palmer, J. H.;
Mahammed, A.; Lancaster, K. M.; Gross, Z.; Gray, H. B. Inorg. Chem.
2009, 48, 9308–9315.
(11) (a) Dixon, I. M.; Collin, J.-P.; Sauvage, J.-P.; Flamigni, L.; Encinas, S.;
Barigelletti, F. Chem. Soc. ReV. 2000, 29, 385–391. (b) Tsuboyama, A.;
Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.; Moriyama,
T.; Miura, S.; Takiguchi, T.; Okada, S.; Hoshino, M.; Ueno, K. J. Am.
Chem. Soc. 2003, 125, 12971–12979. (c) Hung, J.-Y.; Chi, Y.; Pai, I.-H.;
Yu, Y.-C.; Lee, G.-H.; Chou, P.-T.; Wong, K.-T.; Chen, C.-C.; Wu, C.-C.
Dalton Trans. 2009, 33, 6472–6475. (d) Shin, C. H.; Huh, J. O.; Lee, M. H.;
Do, Y. Dalton Trans. 2009, 33, 6476–6479. (e) Rausch, A. F.; Thompson,
M. E.; Yersin, H. J. Phys. Chem. A 2009, 113, 5927–5932. (f) Yu, M.;
Zhao, Q.; Shi, L.; Li, F.; Zhou, Z.; Yang, H.; Yi, T.; Huang, C. Chem.
Commun. 2008, 2115–2117.
(12) (a) Flamigni, L.; Gryko, D. T. Chem. Soc. ReV. 2009, 38, 1635–1646. (b)
Nardis, S.; Mandoj, F.; Paolesse, R.; Fronczek, F. R.; Smith, K. M.; Prodi,
L.; Montalti, M.; Battistini, G. Eur. J. Inorg. Chem. 2007, 16, 2345–2352.
(c) Poulin, J.; Stern, C.; Guilard, R.; Harvey, P. D. Photochem. Photobiol.
2006, 82, 171–176. (d) Liu, X.; Mahammed, A.; Tripathy, U.; Gross, Z.;
Steer, R. P. Chem. Phys. Lett. 2008, 459, 113–118.
Figure 4. Shift in the lower energy Soret component as a function of solvent
polarizability (n used is that of the sodium D line at 20 °C).
Although the Soret solvatochromic shifts of 1-Ir(tma)2 and
1-Ir(py)2 are similar, 1b-Ir(tma)2 exhibits a somewhat weaker
trend, which we suggest is attributable to bromine atom “pre-
polarization” of the electron density on the corrole, thereby
decreasing the change in dipole moment upon excitation. But we
cannot rule out a simpler explanation, namely, that the initially
formed 1b-Ir(tma)2 excited state is not as polar as those of the
other corroles.
(13) Ding, T.; Alema´n, E. A.; Modarelli, D. A.; Ziegler, C. J. J. Phys. Chem. A
2005, 109, 7411–7417.
(14) Steene, E.; Wondimagegn, T.; Ghosh, A. J. Inorg. Biochem. 2002, 88, 113–
118.
(15) Chen, P.; Meyer, T. J. Chem. ReV. 1998, 98, 1439.
(16) Dong, S. S.; Nielsen, R. J.; Palmer, J. H.; Gray, H. B.; Gross, Z.; Dasgupta,
S.; Goddard, W. A. Submitted.
(17) Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 2nd ed.; Klewer
Academic/Plenum Publishers: New York, 1999.
(18) (a) Marcus, R. A. J. Chem. Phys. 1965, 43, 1261–1274. (b) Mody, V. V.;
Fitzpatrick, M. B.; Zabaneh, S. S.; Czernuszewicz, R. S.; Galezowski, M.;
Gryko, D. T. J. Porphyrins Phthalocyanines 2009, 13, 1040–1052.
Our work has established that Ir(III) corroles phosphoresce in
the near-infrared region at ambient temperature with lifetimes and
quantum yields that depend strongly on the nature of the axial
JA101647T
9
J. AM. CHEM. SOC. VOL. 132, NO. 27, 2010 9231