5448
S. Rivera et al. / Tetrahedron Letters 50 (2009) 5445–5448
in most of the cases, the reaction gives products within 5–15 min
(Table 1). The presence of small amounts of bismuth nitrate
(ꢀ5 mol %) is necessary for the success of the reaction. The reaction
fails to produce the product in satisfactory yields at room temper-
ature (without microwave irradiation), the reaction produces the
product in a low yield at a high temperature (150 °C, 1 h, without
microwave irradiation) along with uncharacterized materials.
As part of our continuous research9 in the field of polyaromatic
anticancer drug development, we have applied our newly devel-
oped procedure in the synthesis of polyaromatic and heteroaro-
matic pyrrole derivatives. It has been found that the method is
equally effective with much less nucleophilic amines. However,
for polyaromatic amines, THF is the solvent of choice for the prep-
aration of N-substituted pyrroles. Polyaromatic amines are not sol-
uble in water. It has also been found that these types of compounds
give poor yields of products in the absence of a solvent. The results
are summarized in Table 2.
In conclusion, the present bismuth nitrate-catalyzed micro-
wave-induced method is superior to the other Lewis acid-mediated
syntheses of N-substituted pyrroles in terms of yield of the prod-
ucts (more than 85–100% yields) and time of the reaction. The de-
scribed synthetic protocol allows for the preparation of a variety of
pyrroles without the use of expensive or sensitive reagents. Based
on the simplicity of the procedure, products can be isolated very
easily. The method as reported herein may find applications in
other areas of research.
Acknowledgment
We gratefully acknowledge the funding support from the NIH-
SCORE (Grant # 2S06M008038-37).
References and notes
1. For some biologically active pyrroles. see: (a) Lainton, J. A. H.; Hoffman, J. W.;
Martin, B. R.; Compton, D. R. Tetrahedron Lett. 1995, 36, 1401; (b) De Leon, C. Y.;
Ganem, B. Tetrahedron 1997, 53, 7731.
2. Gilchrist, T. L. J. Chem. Soc., Perkin Trans 1 1998, 615.
3. Dieter, R. K.; Yu, H. Org. Lett. 2000, 2, 2283.
4. Iwasawa, N.; Maeyama, K.; Saitou, M. J. Am. Chem. Soc. 1997, 119, 1486.
5. Furstner, A.; Weintritt, H.; Hupperts, A. J. Org. Chem. 1995, 60, 6637.
6. Katritzky, A.; Jiang, J.; Steel, P. J. J. Org. Chem. 1994, 59, 4551.
7. (a) Hantzsch, A. Chem. Ber. 1890, 23, 1474; (b) Broadbent, H. S.; Burnharm, W.
S.; Olsen, R. K.; Sheely, R. M. J. Heterocycl. Chem. 1968, 5, 757; (c) Bayer, H. O.;
Gotthardt, H.; Huisgen, R. Chem. Ber. 1970, 103, 2356; (d) Huisgen, R.;
Gotthardt, H.; Bayer, H. O.; Schaefter, F. C. Chem. Ber. 1970, 103, 2611; (e)
Cooney, J. V.; McEwen, W. E. J. Org. Chem. 1981, 46, 2570; (f) Berree, F.;
Marchand, E.; Morel, G. Tetrahedron Lett. 1992, 33, 6155; (g) Arcadi, A.; Rossi, E.
Tetrahedron 1998, 54, 15253; (h) Periasamy, M.; Srinivas, G.; Bharati, P. J. Org.
Chem. 1999, 64, 4204.
8. Ruault, P.; Pilard, J.-F.; Touaux, B.; Boullet, F. T.; Hamelin, J. Synlett 1994, 935.
9. (a) Becker, F. F.; Banik, B. K. Polycyclic. Bioorg. Med. Chem. Lett. 1998, 8, 2877; (b)
Becker, F. F.; Mukhopadhyay, C.; Hackfeld, L.; Banik, I.; Banik, B. K. Bioorg. Med.
Chem. 2000, 8, 2693; (c) Banik, B. K.; Becker, F. F. Bioorg. Med. Chem. 2001, 9,
5936; (d) Banik, B. K.; Becker, F. F. Curr. Med. Chem. 2001, 8, 1513; (e) Banik, I.;
Becker, F. F.; Banik, B. K. J. Med. Chem. 2003, 46, 12.
10. (a) Samajdar, S.; Basu, M. K.; Becker, F. F.; Banik, B. K. Tetrahedron Lett. 2001, 42,
4425; (b) Basu, M. K.; Samajdar, S.; Becker, F. F.; Banik, B. K. Synlett 2002, 319;
(c) Banik, B. K.; Adler, D.; Nguyen, P.; Srivastava, N. Heterocycles 2003, 61,
101.
11. For some ecologically friendly reactions from our group, see: (a) Banik, B. K.;
Suhendra, M.; Banik, I.; Becker, F. F. Synth. Commun. 2000, 30, 3745; (b) Banik,
B. K.; Banik, I.; Hackfeld, L.; Becker, F. F. Heterocycles 2001, 56, 467; (c) Banik, B.
K.; Hackfeld, L.; Becker, F. F. Synth. Commun. 2001, 31, 129; (d) Samajdar, S.;
Becker, F. F.; Banik, B. K. Synth. Commun. 2001, 31, 2691; (e) Mukhopadhyay, C.;
Becker, F. F.; Banik, B. K. Synth. Commun. 2001, 31, 2399; (f) Dasgupta, S. K.;
Banik, B. K. Tetrahedron Lett. 2002, 43, 9445; (g) Srivastava, N.; Banik, B. K. J.
Org. Chem. 2003, 68, 2109; (h) Banik, B. K.; Garcia, I.; Morales, F. R. Heterocycles
2007, 71, 919.
3. Experimental
General procedure for the synthesis of pyrroles (3): Amine 1
(1.0 mmol),2,5-dimethoxytetrahydrofuran(1.2 mmol),andbismuth
nitrate pentahydrate (10–30 mg) were irradiated in a CEM auto-
mated microwave oven as specified in Table 1. Ether (10 mL) was
added to the reaction mixture and it was then filtered. Pure product
was isolated from the reaction mixture after evaporation of ether.