X. Ouyang et al. / Journal of Organometallic Chemistry 694 (2009) 3511–3517
3517
A1: Yield, 61.2%; m.p. 147–148 °C; FT-IR (KBr)
m
(cmꢀ1): 3386,
source organic molecule gas deposition system. There are different
materials in every source, and the temperature of each source can
be controlled independently. Different organic materials were
deposited on the ITO-coated glass substrate according to the
designed structure, LiF buffer layer and Al were deposited as a
co-cathode under a pressure of 5 ꢂ 10ꢀ4 Pa. Electroluminescent
spectra and commission international De L’ Eclairage (CIE) coordi-
nation of these devices were measured by a PR655 spectra scan
spectrometer. The luminescent brightness (L)–current (I)–voltage
(V) characteristics were recorded simultaneously with the mea-
surement of the EL spectra by combining the spectrometer through
a Keithly model 2400 programmable voltage-current source. The
current efficiency (E) was decided by this formula, E = Ls/I, then
3030, 2951, 1624, 1589–1510, 1334, 1240; MS (ESI) m/z: 443
(M+H), 1H NMR (CDCl3, 400 MHz) d: 3.86 (s, 3H), 7.32 (d,
J = 7.6 Hz, 2H), 7.34 (d, J = 7.6 Hz, 1H), 7.37–7.40 (m, 2H), 7.41 (d,
J = 7.4 Hz, 1H), 7.42–7.56 (m, 2H), 7.59 (d, J = 16.0 Hz, 1H) 7.80–
7.82 (m, 2H), 7.83 (d, J = 7.8 Hz, 2H), 7.85 (d, J = 8.2 Hz, 1H),
8.16–8.20 (m, 2H), 7.30 (d, J = 16.0 Hz, 1H), 8.32 (d, J = 8.0 Hz,
1H), 10.40 (s, 1H). Anal. Calc. for C30H22N2O2: C, 81.43; H, 5.01;
N, 6.33. Found: C, 81.52; H, 5.04; N, 6.27%.
A2: Yield, 62.5%; m.p. 149–150 °C; FT-IR (KBr)
m
(cmꢀ1): 3389,
3029, 2954, 1645, 1593–1507, 1335; MS (ESI) m/z: 427 (M+H),
1H NMR (CDCl3, 400 MHz) d: 2.36 (s, 3H), 7.10 (d, J = 7.6 Hz, 1H),
7.12–7.32 (m, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 7.4 Hz, 1H),
7.53–7.54 (m, 2H), 7.66 (d, J = 16.0 Hz, 1H), 7.70–7.79 (m, 2H),
7.93 (d, J = 7.8 Hz, 2H), 7.99 (d, J = 8.2 Hz, 1H), 8.02–8.10 (m, 2H),
8.28 (d, J = 16.0 Hz, 1H), 8.30 (d, J = 8.0 Hz, 1H), 10.02 (s, H). Anal.
Calc. for C30H22N2O: C, 84.48; H, 5.20; N, 6.57. Found: C, 84.61;
H, 5.23; N, 6.51%.
the power efficiency (gP) was calculated by formula of gP = pL/IV,
where L is the luminescent brightness, s is the luminescent area,
I is the current, and V is the voltage. The layer thicknesses of the
deposited materials were monitored in situ using a model FTM-V
oscillating quartz thickness monitor made in Shanghai, China. All
the measurements were carried out at room temperature under
ambient conditions.
A3: Yield, 41%; m.p. 164–166 °C; 1H NMR (CDCl3, 400 MHz) d:
8.13 (d, J = 8.80 Hz, 1H), 7.79–7.85 (m, 4H), 7.67 (d, J = 8.80 Hz,
2H), 7.58 (d, J = 7.2 Hz, 1H), 7.38–7.48 (m, 3H), 7.28–7.36 (m,
2H), 7.18 (d, J = 6.4 Hz, 1H), 3.97 (s, 2H); FT-IR (KBr)
m
(cmꢀ1):
Acknowledgements
3040, 1683, 1633, 1555, 960; MS (ESI) m/z (%): 337.4 (M+H). Anal.
Calc. for C24H17NO: C, 85.94; N, 4.18; H, 5.11. Found: C, 85.90; N,
4.20; H, 5.15%.
Financial support from the National Natural Science Foundation
of China (Nos. 20671036, 2007A010500008 and 2008B010800030)
are gratefully acknowledged. Ouyang X H would like to acknowl-
edge the receipt of the Doctorate Foundation from South China
University of Technology (SCUT), Guangzhou and the China Schol-
arship Council. J.L. is a Cheung Kong Guest Chair Professor associ-
ated with SCUT.
A4: Yield, 0.30 g, 42%. m.p. 169–171 °C; 1H NMR (CDCl3,
400 MHz): d 8.76 (d, J = 9.48 Hz, 1H), 8.68 (d, J = 8.80 Hz, 1H),
8.52 (d, J = 15.92 Hz, 1H), 8.31–8.33 (m, 1H), 7.28–7.36 (m, 2H),
8.17 (d, J = 8.50 Hz, 3H), 8.10 (s, 1H), 7.94 (d, J = 7.35 Hz, 1H),
7.61–7.75 (m, 5H), 7.40–7.50 (m, 2H), 7.32 (d, J = 7.29 Hz, 1H),
7.19 (d, J = 7.62 Hz, 1H); FT-IR (KBr)
m
(cmꢀ1): 3048, 1687, 1630,
1562, 1458, 961; MS (ESI) m/z (%): 348.5 (M+H). Anal. Calc. for
C25H17NO: C, 86.43; N, 4.03; H, 4.93. Found: C, 86.40; N, 4.03; H,
4.91%.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
5.4. General Procedure for compounds 1, 2, 3 and 4
References
Zn(II) complexes were prepared from A1 to A4 and zinc acetate
dihydrate in DMF. Zinc acetate dihydrate (2.2 mmol, 0.413 g) was
dissolved in 45 mL anhydrous methanol. The Zn(II) solution was
added dropwise into the DMF (90 mL) solution of 1 mmol of A
and kept stirring for 24 h. The yellow precipitate was filtered off,
washed with methanol and dried in vacuum to afford 1, 2, 3 and 4.
[1] J.L. Garcia-Alvarez, Curr. Org. Chem. 12 (2008) 1199.
[2] S.C. Jain, A.K. Kapoor, W. Geens, J. Poortmans, R. Mertens, M.J. Willander, Appl.
Phys. 92 (2002) 3752.
[3] A.E.W. Sarhan, Y. Nouchi, T. Izumi, Tetrahedron 59 (2003) 6353.
[4] V.K. Rai, R. Srivastava, M.N. Kamalasanan, Synthetic Met. 159 (2009) 234.
[5] N. Matsumoto, T. Miyazaki, M. Nishiyama, C.J. Adachi, Phys. Chem. C 113
(2009) 6261.
[6] Z.W. Liu, Z.Q. Bian, F. Hao, D.B. Nie, F. Ding, Z.Q. Chen, C.H. Huang, Org. Electron.
10 (2009) 247.
[7] Y.T. Tao, Q. Wang, Y. Shang, C.L. Yang, L. Ao, J.G. Qin, D.G. Ma, Z.G. Shuai, Chem.
Commun. (2009) 77.
1: Yield, 68.9%; m.p. >300 °C; FT-IR (KBr)
m
(cmꢀ1): 3025, 2954,
1648, 1592–1514, 1336, 1107, 515, 455; MS (FAB) m/z: 949 (M+H).
Anal. Calc. for ZnC60H42N4O4: C, 75.92; H, 4.43; N, 5.90. Found: C,
76.03; H, 4.46; N, 5.87%.
[8] C.H. Chang, Y.J. Lu, C.C. Liu, Y.H. Yeh, C.C.J. Wu, Disp. Technol. 3 (2007) 193–
199.
2: Yield, 72.8%, m.p. >300 °C; FT-IR (KBr)
m
(cmꢀ1): 3033, 2956,
1642, 1594–1513, 1337, 1104, 514, 458; MS (FAB) m/z: 915 (M+H).
Anal. Calc. for ZnC60H42N4O2: C, 78.57; H, 4.58; N, 6.11. Found: C,
78.73; H, 4.60; N, 6.08%.
[9] A. Liedtke, M. O’Neill, A. Wertmoller, S.P. Kitney, S.M. Kelly, Chem. Mater. 20
(2008) 3579.
[10] M.C. Gather, R. Alle, H. Becker, K. Meerholz, Adv. Mater. 19 (2007) 4460.
[11] C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51 (1987) 913.
[12] A. Mishra, P.K. Nayak, N. Periasamy, Tetrahedron Lett. 45 (2004) 6265.
[13] Z. Cui, S.H. Kim, Chinese Sci. Bull. 49 (2004) 797.
[14] J. Xie, Z. Ning, H. Tian, Tetrahedron Lett. 46 (2005) 8559.
[15] H.P. Zhao, X.T. Tao, P. Wang, Y. Ren, J.X. Yang, Y.X. Yan, C.X. Yuan, H.J. Liu, D.C.
Zou, M.H. Jiang, A. Jiang, Org. Electron. 8 (2007) 673.
[16] H.P. Zhao, X.T. Tao, F.Z. Wang, Y. Ren, X.Q. Sun, J.X. Yang, Y.X. Yan, D.C. Zou, X.
Zhao, M.H. Jiang, Chem. Phys. Lett. 439 (2007) 132.
[17] J. Jo, D. Vak, Y.Y. Noh, S.S. Kim, B. Lim, D.Y. Kim, J. Mater. Chem. 18 (2008) 654.
[18] H. Suh, Y. Jin, S.H. Park, D. Kim, J. Kim, C. Kim, J.Y. Kim, K. Lee, Macromolecules
38 (2005) 6285.
[19] Ì. Kaya, A. Çetìner, M.J. Saçak, Maromol. Sci. A 44 (2007) 463.
[20] M.A. Noginov, M. Vondrova, S.N. Wiliams, M. Bahoura, V.I. Gavrilenko, S.M.
Black, V.P. Drachev, V.M. Shalaev, A.J. Sykes, Opt. A-Pure Appl. Op. 7 (2005)
s219.
3: Yield, 91%; m.p. >300 °C; IR (KBr)
m
(cmꢀ1): 3050, 2920, 2854,
1622, 1555, 1102, 520, 468; MS (FAB): 732.2 (MꢀH). Anal. Calc. for
ZnC48H32N2O2: C, 78.58; N, 3.82; H, 4.37. Found: C, 78.43; N, 3.80;
H, 4.33%.
4: Yield, 91%; m.p. >300 °C; IR (KBr)
m
(cmꢀ1): 3050, 1622, 1555,
1102, 520, 468.06; MS (FAB): 757.9 (M+H). Anal. Calc. for
ZnC50H32N2O2: C, 79.26; N, 3.70; H, 4.23. Found: C, 79.23; N,
3.81; H, 4.29%.
5.5. Devices fabrication
[21] H. Cao, Z. Chen, Y. Liu, B. Qu, S. Xu, S. Cao, Z. Lan, Z. Wang, Q. Gong, Synthetic
Met. 157 (2007) 427.
[22] T.H. Lee, K.L. Tong, S.K. So, L.M. Leung, Synthetic Met. 155 (2005) 116.
[23] M.G. Hutchings, I. Ferguson, S. Allen, J.E. Shearman, MCLC S&T B Nonlinear.
Opt. 7 (1994) 157.
The ITO-coated glass substrate was first immersed sequentially
in ultrasonic baths of acetone, alcohol and deionized water for
10 min, respectively, and then dried in an oven. The resistance of
a sheet ITO is 50
X/h. The devices were fabricated in a multi-