9078 Inorganic Chemistry, Vol. 48, No. 19, 2009
Jain et al.
emission quantum yield of [Ru(tpy)2]2+-type molecules upon
incorporation of a methylphenyl group at the 40 position of
the terpyridine ring.15 The 40-methyl-sulphonyl substituted
bis-terpyridine complexes have been shown to have length-
ened room temperature luminescence lifetimes ([Ru(MeSO2-
tpy)2](PF6)2, 25 ns; [(MeSO2-tpy)Ru(tpy-OH)](PF6)2, 50 ns)
due to the strong electron-withdrawing ability of the methyl-
sulfonyl group.19
Figure 1. Polyazine ligands used in the study (tpy = 2,20:60,200-terpyridine,
MePhtpy = 40-(4-methylphenyl)-2,20:60,200-terpyridine, tBu3tpy = 4,40,400-
tri-tert-butyl-2,20:60,200-terpyridine), dpp = 2,3-bis (2-pyridyl)pyrazine).
The DNA photocleavage activity of ruthenium polyazine
complexes is well known.24-26 These types of complexes have
been shown to photocleave DNA via singlet oxygen (1O2)
3
em
3
generation. The MLCT state of these complexes under-
(λmax = 605 nm, excited-state lifetime of the MLCT,
goes energy transfer to molecular oxygen (3O2) to generate
1O2, which reacts with DNA, cleaving the backbone.24-26
Thummel and co-workers have reported that the complex,
[Ru(bpy)2(DAP)]2+ (DAP = 1,12-diazaperylene), photo-
cleaves DNA upon irradiation with visible light due to the
τ = 860 ns in acetonitrile).10
Applications of ruthenium(II) bis-tridentate polyazine
light absorbers are more limited than the highly studied
ruthenium(II) tris-bidentate polyazine chromophores. The
complex, [Ru(tpy)2]2+ (tpy = 2,20:60,200-terpyridine), exhibits
1
formation of the O2 species.27 The lower excited-state life-
less favorable photophysical properties than [Ru(bpy)3]2+
,
time of [Ru(tpy)2]2+ prevents its application in DNA photo-
3
exhibiting a very short-lived MLCT (0.25 ns in aqueous
cleavage.28,29
solution) excited state due to the thermal population of the
3LF (ligand field) excited state.11-14 The thermal accessibility
of the ligand field state is due to the unfavorable bite angle for
octahedral coordination associated with tpy-type ligands,
lowering the energy of the ligand field state. The low-lying
3LF state deactivates the normally emissive 3MLCT state. The
use of terpyridine ligands (Figure 1) provides the distinct
advantage of allowing stereochemical control, eliminating
the Δ and Λ isomeric mixtures, characteristic of tris-bidentate
systems.
The photophysical properties of Ru(II) bis-tridentate poly-
azine metal complexes can be tuned by the introduction of
various substituents on the terpyridine ligand.15-22 Electron-
withdrawing groups stabilize the lowest unoccupied molecu-
lar orbital (LUMO), while electron-donating groups destabi-
lize the highest occupied molecular orbital (HOMO).19,23
Stabilization of the lowest 3MLCT state results in lower
thermal population of the 3LF state. Balzani and co-workers
have reported both an increased excited-state lifetime and an
Complexes incorporating a tpy ligand were reported to
interact with DNA through electrostatic interaction, intercala-
tion, and groove binding.30-32 Turro and co-workers have
recently reported the DNA photocleavage activity of
[Ru(tpy)(pydppz)]2+ (pydppz = 3-(pyrid-20-yl)dipyrido(3,2-
a:20,30-c]phenazine) in the presence of oxygen.28 Thorp and co-
workers have examined the DNA cleavage activity of
[Ru(tpy)(tmen)(OH2)]2+ (tmen =N,N,N0,N0-tetramethylethy-
lenediamine) by cyclic voltammetry.26 The heteroleptic com-
plexes, [Ru(tpy)(PHBI)]2+ (PHBI = 2-(2-benzimidazole)-
1,10-phenanthroline) and [Ru(tpy)(PHNI)]2+ (PHNI = 2-(2-
napthoimidazole)-1,10-phenanthroline), were reported to inter-
act with DNA via electrostatic interaction and intercalation,
respectively.26 Recently, the 1O2 generation and the DNA
photocleavage ability of an aryl modified [Ru(X-tpy)2]2+
(X = 2-naphthyl, 1-pyrenyl, or 9-anthracenyl) complex has
been reported.33
Mixed metal complexes, consisting of ruthenium light
absorbers and a cisplatin unit, represent an emerging class
of bioactive molecules of interest as anticancer agents. The
enhanced covalent binding of mixed metal supramolecular
complexes compared to cisplatin has been reported.34,35
Complexes of the general formula [(bpy)2M(dpb)PtCl2]-
(PF6)2 (where M = Ru and Os, dpb = 2,3-bis(2-pyri-
dyl)benzoquinoxaline, bpy = 2,20-bipyridine) bind with
(10) Durham, B.; Caspar, J. V.; Nagle, J. K.; Meyer, T. J. J. Am. Chem.
Soc. 1982, 104, 4803–4810.
(11) Young, R. C.; Nagle, J. K.; Meyer, T. J.; Whitten, D. G. J. Am.
Chem. Soc. 1978, 100, 4773–4778.
(12) Winkler, J. R.; Netzel, T. L.; Creutz, C.; Sutin, N. J. Am. Chem. Soc.
1987, 109, 2381–2392.
(13) Berger, R. M.; McMillin, D. R. Inorg. Chem. 1988, 27, 4245–4249.
(14) Kirchhoff, J. R.; McMillin, D. R.; Marnot, P. A.; Sauvage, J. P. J.
Am. Chem. Soc. 1985, 107, 1138–1141.
(15) Collin, J. P.; Guillerez, S.; Sauvage, J. P.; Barigelletti, F.; De Cola, L.;
Flamigni, L.; Balzani, V. Inorg. Chem. 1991, 30, 4230–4238.
(16) Barigelletti, F.; Flamigni, L.; Balzani, V.; Collin, J.-P.; Sauvage,
J.-P.; Sour, A.; Constable, E. C.; Thompson, A. M. W. C. J. Am. Chem. Soc.
1994, 116, 7692–7699.
(17) Beley, M.; Collin, J.-P.; Sauvage, J.-P.; Sugihara, H.; Heisel, F.;
Miehe, A. J. Chem. Soc., Dalton Trans. 1991, 3157–3159.
(18) Thummel, R. P.; Hegde, V.; Jahng, Y. Inorg. Chem. 1989, 28, 3264–
3267.
(19) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Thompson,
A. M. W. C. Inorg. Chem. 1995, 34, 2759–2767.
(20) Abrahamsson, M.; Jager, M.; Osterman, T.; Eriksson, L.; Persson,
P.; Becker, H. C.; Johansson, O.; Hammarstrom, L. J. Am. Chem. Soc. 2006,
128, 12616–12617.
(24) Clarke, M. J. Coord. Chem. Rev. 2003, 236, 209–233.
(25) Farrer, B. T.; Thorp, H. H. Inorg. Chem. 2000, 39, 44–49.
(26) Grover, N.; Gupta, N.; Singh, P.; Thorp, H. H. Inorg. Chem. 1992,
31, 2014–2020.
(27) Chouai, A.; Wicke, S. E.; Turro, C.; Bacsa, J.; Dunbar, K. R.; Wang,
D.; Thummel, R. P. Inorg. Chem. 2005, 44, 5996–6003.
(28) Liu, Y.; Hammitt, R.; Lutterman, D. A.; Thummel, R. P.; Turro, C.
Inorg. Chem. 2007, 46, 6011–6021.
(29) Jain, A.; Slebodnick, C.; Winkel, B. S. J.; Brewer, K. J. J. Inorg.
Biochem. 2008, 102, 1854–1861.
(30) Patel, K. K.; Plummer, E. A.; Darwish, M.; Rodger, A.; Hannon, M.
J. J. Inorg. Biochem. 2002, 91, 220–229.
(31) Howe-Grant, M.; Lippard, S. J. Biochemistry 1979, 18, 5762–5769.
(32) Jiang, C.-W.; Chao, H.; Li, H.; Ji, L.-N. J. Inorg. Biochem. 2003, 93,
247–255.
(33) Ding, H.-Y.; Wang, X.-S.; Song, L.-Q.; Chen, J.-R.; Yu, J.-H.; Chao,
L.; Zhang, B.-W. J. Photochem. Photobiol., A 2006, 177, 286–294.
(34) Milkevitch, M.; Shirley, B. W.; Brewer, K. J. Inorg. Chim. Acta 1997,
264, 249–256.
(21) Abrahamsson, M.; Wolpher, H.; Johansson, O.; Larsson, J.;
Kritikos, M.; Eriksson, L.; Norrby, P. O.; Bergquist, J.; Sun, L.; Akermark,
B.; Hammarstrom, L. Inorg. Chem. 2005, 44, 3215–3225.
(22) Constable, E. C.; Harverson, P.; Smith, D. R.; Whall, L. Polyhedron
1997, 16, 3615–3623.
(23) Medlycott, E. A.; Hanan, G. S. Coord. Chem. Rev. 2006, 250, 1763–
1782.
(35) Milkevitch, M.; Brauns, E.; Brewer, K. J. Inorg. Chem. 1996, 35,
1737–1739.