Published on Web 09/15/2009
Unusual Electronic Structure of First Row Transition Metal
Complexes Featuring Redox-Active Dipyrromethane Ligands
Evan R. King and Theodore A. Betley*
Department of Chemistry and Chemical Biology, HarVard UniVersity, 12 Oxford Street, 306E
Mallinckrodt, Cambridge, Massachusetts 02138
Received May 16, 2009; E-mail: betley@chemistry.harvard.edu
Abstract: Transition metal complexes (Mn f Zn) of the dipyrromethane ligand, 1,9-dimesityl-5,5-
dimethyldipyrromethane (dpm), have been prepared. Arylation of the dpm ligand R to the pyrrolic nitrogen
donors limits the accessibility of the pyrrole π-electrons for transition metal coordination, instead forcing
η1,η1 coordination to the divalent metal series as revealed by X-ray diffraction studies. Structural and magnetic
characterization (SQUID, EPR) of the bis-pyridine adducts of (dpm)MnII(py)2, (dpm)FeII(py)2, and (dpm)-
CoII(py)2 reveal each divalent ion to be high-spin and pseudotetrahedral in the solid state, whereas the
(dpm)NiII(py)2 is low-spin and adopts a square-planar geometry. Differential pulse voltammetry on the
(dpm)MII(py)2 series reveals a common two-electron oxidation pathway that is entirely ligand-based, invariant
to the divalent metal-bound, its geometry or spin state within the dpm framework. This latter observation
indicates that fully populated ligand-based orbitals from the dpm construct lie above partially filled metal
3d orbitals without intramolecular redox chemistry or spin-state tautomerism occurring. DFT analysis on
this family of complexes corroborates this electronic structure assignment, revealing that the highest lying
molecular orbitals are completely ligand-based. Chemical oxidation of the deprotonated dpm framework
results in the four-electron oxidation of the dipyrrolide framework, although this oxidation product was not
observed either in the electrochemical or chemical oxidation of the (dpm)MII(py)2 complexes.
1. Introduction
ligands have most notably enriched the field of organometallic
research with impacts ranging from bestowing multielectron
reactivity to d0 metals,7 facilitating electronic interplay between
metal and ligand during catalytic transformations,6 and enabling
dual-site reactivity during reaction sequences.8
Our own studies have focused on the coordination chemistry
of dipyrromethane9,10 and dipyrromethene11 ligand frameworks
as analogues to porphyrinogen and porphyrin scaffolds, respec-
tively. The pyrrole aromaticity both attenuates the binding N
π-basicity and makes them good candidates for ligand-centered
redox activity by virtue of the high-lying π orbitals.12 This
Multielectron redox activity has long been associated with
transition metal complexes with two or more accessible oxida-
tion state changes (e.g., Mn f Mn+1 f Mn+2). When the ligands
that bind the transition metal ions can themselves operate as
electron (or hole) reservoirs, the notion of accessible molecular
redox states expands beyond that dictated by the metal’s
d-orbital electron configuration.1 Redox activity has been
attributed to a variety of ligand platforms (e.g., catechols,2
dithiolates,3 phenolates,4 porphyrins,5 bisimino-pyridines,6 amido-
phenolates,7 etc.) via their observed coordination chemistry and
spectrochemical properties. The redox properties of the ligand
platforms are being increasingly parlayed into driving new
stoichiometric and catalytic reaction sequences. Redox-active
(7) (a) Herebian, D.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt,
K. J. Am. Chem. Soc. 2001, 123, 10012–10023. (b) Blackmore, K. J.;
Ziller, J. W.; Heyduk, A. F. Inorg. Chem. 2005, 44, 5559–5561. (c)
Haneline, M. R.; Heyduk, A. F. J. Am. Chem. Soc. 2006, 128, 8410–
8411. (d) Blackmore, K. J.; Lal, N.; Ziller, J. W.; Heyduk, A. F. J. Am.
Chem. Soc. 2008, 130, 2728–2730.
(1) Chaudhuri, P.; Verani, C. N.; Bill, E.; Bothe, E.; Weyhermu¨ller, T.;
Wieghardt, K. J. Am. Chem. Soc. 2001, 123, 2213–2223.
(2) Masui, H.; Lever, A. B. P.; Auburn, P. R. Inorg. Chem. 1991, 30,
2402–2410.
(8) (a) Gunanathan, C.; Milstein, D. Angew. Chem., Int. Ed. 2008, 47,
8661–8664. (b) Gunanathan, C.; Shimon, L. J. W.; Milstein, D. J. Am.
Chem. Soc. 2009, 131, 3146–3147. (c) Kohl, S. W.; Weiner, L.;
Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.; Ben-David,
Y.; Iron, M. A.; Milstein, D. Science 2009, 324, 74–77.
(9) (a) Jones, D. J.; Gibson, V. C. Heterocycles 2006, 68, 1121–1127.
(b) Swartz, D. L.; Odom, A. L. Organometallics 2006, 25, 6125–
6133.
(3) (a) Schrauzer, G. N.; Mayweg, V. J. Am. Chem. Soc. 1962, 84, 3221.
(b) Stiefel, E. I.; Waters, J. H.; Billig, E.; Gray, H. B. J. Am. Chem.
Soc. 1965, 87, 3016–3017.
(4) (a) Hockertz, J.; Steenken, S.; Wieghardt, K.; Hildebrandt, P. J. Am.
Chem. Soc. 1993, 115, 11222–11230. (b) Chaudhuri, P.; Hess, M.;
Muller, J.; Hildenbrand, K.; Bill, E.; Weyhermuller, T.; Wieghardt,
K. J. Am. Chem. Soc. 1999, 121, 9599–9610.
(10) (a) Novak, A.; Blake, A. J.; Wilson, C.; Love, J. B. Chem. Commun.
2002, 2796–2797. (b) Love, J. B.; Salyer, P. A.; Bailey, A. S.; Wilson,
C.; Blake, A. J.; Davies, E. S.; Evans, D. J. Chem. Commun. 2003,
1390–1391.
(5) Kadish, K. M., Smith, K. M., Guilard, R., Eds. The Porphyrin
Handbook; Academic Press: San Diego, CA, 2003; Vols. 15-20.
(6) (a) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J.
J. Am. Chem. Soc. 2006, 128, 13340–13341. (b) Bart, S. C.; Chlopek,
K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.; Neese, F.; Wieghardt,
K. J. Am. Chem. Soc. 2006, 128, 13901–13912. (c) Bart, S. C.;
Lobkovsky, E.; Bill, E.; Wieghardt, K.; Chirik, P. J. Inorg. Chem.
2007, 46, 7055–7063.
(11) King, E. R.; Betley, T. A. Inorg. Chem. 2009, 48, 2361–2363.
(12) (a) Floriani, C.; Floriani-Moro, R. In The Porphyrin Handbook; Kadish,
K. M., Smith, K. M., Guilard, R., Eds.;Academic Press: San Diego,
CA, 2000; Vol. 3, pp 405-420. (b) Bachmann, J.; Nocera, D. G. J. Am.
Chem. Soc. 2004, 126, 2829–2837. (c) Bachmann, J.; Nocera, D. G.
J. Am. Chem. Soc. 2005, 127, 4730–4743.
9
14374 J. AM. CHEM. SOC. 2009, 131, 14374–14380
10.1021/ja903997a CCC: $40.75 2009 American Chemical Society