Scheme 1
.
Intramolecular Crossed Benzoin Reaction Catalyzed
by NHC Organocatalyst
Table 1. NHC-Catalyzed Benzoin Cyclization of 2a
temp
substrate
Et3N
product
yieldb
(%)
entry
(°C)
2
(mol %)
1
1
2
3
25
25
25
66
66
66
66
66
66
66
2a
2a
2a
2a
2a
2b
2c
2d
2e
2f
20
15
10
20
20
20
20
20
20
20
1a
1a
1a
1a
1a
1b
1c
1d
1e
1f
65
46
42
81
29
59
82
76
73
40
4
5c
6
7
8
9
10
a Conditions: 2 (0.300 mmol), NHC cat. A (0.060 mmol, 20 mol %),
Et3N (quantity indicated above), THF (1 mL), 24 h. b Isolated yield of 1.
c NHC cat. B (20 mol %) was used.
the facile stereoselective synthesis of 1 using NHC precursors
A-E (Figure 1).
We first explored the annulation of 2a, which can be
prepared most easily according to the literature,13a by using
achiral NHC precatalysts, triazolium salt A and thiazolium
salt B. The results are shown in Table 1. The reaction was
initially performed with 20 mol % of triazolium salt A and
Et3N in THF at 25 °C for 24 h to give 1a as a single
diastereomer in 65% (entry 1). The cis-configuration of 1a
was confirmed by the NOE experiment after 1a had been
converted into 3 (Scheme 2); a positive NOE was observed
for the signal of the TMS group upon irradiation of the
methyl group at the bridgehead position (Supporting Infor-
mation). The addition of 1 equiv of Et3N was necessary for
generating NHC most efficiently (entries 1-3). Increasing
the reaction temperature up to 66 °C afforded 1a in 81%
(entry 4). In contrast, the use of thiazolium salt B resulted
in a lower yield (entry 5). The substrate scope was then
investigated by using triazolium salt A. The homologues 2b,
2c, and 2e, which were prepared according to the
literature,13b-d and newly synthesized 2d and 2f were
subjected to the NHC-catalyzed reaction. In all cases, bicyclic
compounds 1b-f were obtained completely diastereoselec-
tively in moderate to high yields (entries 6-10).
Next, we examined the asymmetric desymmetrization of
2 using chiral NHCs. Chiral triazolium salt D prepared
according to the literature,14 and commercially available
chiral triazolium salts C and E were employed. NHC
precatalyst C, which has been reported by Rovis to show
high catalytic activity and enantioselectivity in the intramo-
lecular Stetter reactions,5b-e was initially used to optimize
the reaction conditions for 2a. The results are summarized
in Table S1 (Supporting Information), and the best result is
shown in Table 2 (entry 1). Despite various attempts, 38%
Figure 1. NHC organocatalysts A-E.
centers at the two adjacent bridgehead positions. Interest-
ingly, a series of homologues 1, except for racemic 1d,12
are new compounds, which may suggest that they are difficult
to prepare by other synthetic methods. Further conversions
of 1 into other new compounds can also be expected. Because
of these features, compounds 1 are the fascinating chiral
building blocks worthy of synthetic study. Here, we report
(7) (a) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004,
126, 14370–14371. (b) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed.
2004, 43, 6205–6208. (c) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131–
3134. (d) Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem.
Soc. 2006, 128, 8736–8737. (e) Chan, A.; Scheidt, K. A. J. Am. Chem.
Soc. 2007, 129, 5334–5335. (f) Wadamoto, M.; Phillips, E. M.; Reynolds,
T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 10098–10099. (g)
Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2008,
130, 2416–2417. (h) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2008,
130, 2740–2741. (i) Li, Y.; Zhao, Z.-A.; He, H.; You, S.-L. AdV. Synth.
Catal. 2008, 350, 1885–1890. (j) Matsuoka, Y.; Ishida, Y.; Sasaki, D.; Saigo,
K. Chem.sEur. J. 2008, 14, 9215–9222.
(8) (a) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Org. Lett.
2008, 10, 277–280. (b) Zhang, Y.-R.; Lv, H.; Zhou, D.; Ye, S. Chem.sEur.
J. 2008, 14, 8473–8476. (c) He, L.; Lv, H.; Zhang, Y.-R.; Ye, S. J. Org.
Chem. 2008, 73, 8101–8103. (d) Huang, X.-L.; He, L.; Shao, P.-L.; Ye, S.
Angew. Chem., Int. Ed. 2009, 48, 192–195.
(9) (a) Singh, R.; Kissling, R. M.; Letellier, M.-A.; Nolan, S. P. J. Org.
Chem. 2004, 69, 209–212. (b) Suzuki, Y.; Yamauchi, K.; Muramatsu, K.;
Sato, M. Chem. Commun. 2004, 2770–2771.
(10) (a) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006,
128, 8418–8420. (b) He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc.
2006, 128, 15088–15089. (c) Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W.
J. Am. Chem. Soc. 2007, 129, 3520–3521. (d) He, M.; Bode, J. W. J. Am.
Chem. Soc. 2008, 130, 418–419. (e) Struble, J. R.; Kaeobamrung, J.; Bode,
J. W. Org. Lett. 2008, 10, 957–960. (f) He, M.; Beahm, B. J.; Bode, J. W.
Org. Lett. 2008, 10, 3817–3820.
(13) (a) Katoh, T.; Mizumoto, S.; Fudesaka, M.; Takeo, M.; Kajimoto,
T.; Node, M. Tetrahedron: Asymmetry 2006, 17, 1655–1662. (b) Hayashi,
Y.; Sekizawa, H.; Yamaguchi, J.; Gotoh, H. J. Org. Chem. 2007, 72, 6493–
6499. (c) Katoh, T.; Mizumoto, S.; Fudesaka, M.; Nakashima, Y.; Kajimoto,
T.; Node, M. Synlett 2006, 2176–2182. (d) Deschamp, J.; Riant, O. Org.
Lett. 2009, 11, 1217–1220.
(11) Mennen, S. M.; Gipson, J. D.; Kim, Y. R.; Miller, S. J. J. Am.
Chem. Soc. 2005, 127, 1654–1655.
(12) (a) Mellor, M.; Santos, A.; Scovell, E. G.; Sutherland, J. K. J. Chem.
Soc., Chem. Commun. 1978, 528–529. (b) Amupitan, J. A.; Scovell, E. G.;
Sutherland, J. K. J. Chem. Soc., Perkin Trans. 1 1983, 755–757.
(14) Takikawa, H.; Suzuki, K. Org. Lett. 2007, 9, 2713–2716.
Org. Lett., Vol. 11, No. 21, 2009
4867