Novel Gramicidin S Analogues
haney, Biochemistry 2005, 44, 2103–2112; c) M. Jelokhani-Nia-
raki, L. H. Kondejewski, S. W. Farmer, R. E. W. Hancock,
C. M. Kay, R. S. Hodges, Biochem. J. 2000, 349, 747–755.
[9] J. H. Kondejewski, S. W. Farmer, D. S. Wishart, C. M. Kay,
R. E. W. Hancock, R. S. Hodges, J. Biol. Chem. 1996, 241,
25261–25268.
Compound 8 was prepared according to the general procedure on
a 200-µmol scale; yield 123 mg, 91 µmol, 46%. For the H NMR
1
and NOE data see Table 3. 13C NMR (151 MHz, CDCl3): δ =
174.34, 173.54, 173.51, 173.40, 173.00, 172.97, 172.73, 172.67,
172.43, 162.86, 162.63, 139.23, 136.86, 130.56, 130.36, 129.64,
129.36, 128.79, 128.75, 128.44, 117.05, 80.69, 74.35, 71.41, 70.32,
61.90, 59.86, 59.45, 55.86, 55.77, 53.27, 53.25, 52.74, 51.69, 47.80,
47.24, 42.27, 42.02, 40.73, 40.52, 40.44, 37.27, 32.27, 30.57, 30.40,
29.81, 27.27, 25.84, 25.65, 25.04, 24.63, 24.35, 23.44, 23.16, 23.08,
22.25, 19.81, 19.56, 19.02, 18.86 ppm. HRMS calcd. for
[C58H91N11O11 + H]+ 1118.69723; found 1118.69896.
[10]
Y. Shimmohigashi, H. Kodama, S. Imazu, H. Horimoto, K.
Sakaguchi, M. Waki, H. Uchida, M. Kondo, T. Kato, N.
Izumiya, FEBS Lett. 1987, 222, 251–255.
[11]
[12]
J. Xioa, B. Weisblum, P. Wipf, Org. Lett. 2006, 8, 4631–4734.
G. M. Grotenbreg, M. S. M. Timmer, A. L. Llamas-Saiz, M.
Verdoes, G. A. van der Marel, M. J. van Raaij, H. S. Overk-
leeft, M. Overhand, J. Am. Chem. Soc. 2004, 126, 3444–3446.
Reviewed in: a) S. A. W. Grunner, E. Locardi, E. Lohof, H.
Kessler, Chem. Rev. 2002, 102, 491–514; b) T. K. Chakraborty,
P. Srinivasu, S. Tapadar, B. K. Mohan, Glycoconjugate J. 2005,
22, 83–93; c) M. D. P. Risseeuw, M. Overhand, G. W. J. Fleet,
M. I. Simone, Tetrahedron: Asymmetry 2007, 18, 2001–2010.
a) T. K. Chakraborty, D. Koley, R. Ravi, V. Krishnakumari, R.
Nagaraj, A. C. Kunwar, J. Org. Chem. 2008, 73, 8731–8744;
b) G. M. Grotenbreg, A. E. M. Buizert, A. L. Llamas-Saiz, E.
Spalburg, P. A. van Hooft, A. J. de Neeling, D. Noort, M. J.
van Raaij, G. A. van der Marel, H. S. Overkleeft, M. Over-
hand, J. Am. Chem. Soc. 2006, 128, 7559–7565.
Compound 9 was prepared according to the general procedure on
a 200-µmol scale; yield 56.1 mg, 41.7 µmol, 21%. For the 1H NMR
and NOE data see Table 4. 13C NMR (151 MHz, CDCl3): δ =
174.32, 173.60, 173.54, 173.38, 173.05, 172.93, 172.68, 172.52,
172.11, 138.79, 136.85, 130.36, 129.66, 129.60, 129.08, 129.00,
128.48, 78.77, 74.17, 71.30, 69.89, 69.77, 61.92, 59.72, 59.67, 55.85,
53.52, 53.34, 52.83, 51.66, 49.85, 49.43, 49.28, 49.14, 49.00, 48.86,
48.72, 48.57, 47.83, 47.83, 42.03, 41.60, 40.68, 40.59, 32.51, 32.30,
30.61, 29.82, 25.85, 25.60, 24.36, 23.29, 23.23, 23.01, 22.35, 19.80,
19.50, 18.94, 18.79 ppm. HRMS calcd. for [C58H91N11O11 + H]+
1118.69723; found 1118.69870.
[13]
[14]
[15]
[16]
F. Kazemi, A. R. Kiasat, S. Ebrahimi, Synth. Commun. 2003,
33, 999–1004.
In the case of AAAs 4 and 5 it is imperative to avoid prolonged
existence of the intermediate iminophosphorane by using anhy-
drous reaction conditions. In anhydrous THF, the intermediate
iminophosphorane suffered from nucleofilic attack of the imi-
nophosphorane nitrogen on the AAA carbonyl, resulting in
loss of the AAA moiety as depicted below. Premixing the THF
with H2O prevented this side reaction to occur as gauged by
LCMS analysis (See the proposed side reaction during Staud-
inger reduction.)
Acknowledgments
We are very grateful for generous financial support by TNO De-
fense, Security and Safety, Rijswijk, the Netherlands. We thank
Hans van der Elst for assistance with the LCMS analyses and
HPLC purifications and Kees Erkelens and Fons Lefeber for assist-
ance with the recording of NMR spectra.
[1] A number of reviews have been published in relation to CAPs:
a) R. M. Epand, H. J. Vogel, Biochim. Biophys. Acta 1999,
1462, 11–28; b) A. Giuliani, G. Pirri, S. F. Nicoletto, Cent. Eur.
J. Biol. 2007, 2, 1–33; c) R. E. W. Hancock, D. S. Chapple,
Antimicrob. Agents Chemother. 1999, 43, 1317–1323.
[2] G. F. Gause, M. G. Brazhnikove, Nature 1944, 154, 703–703.
[3] a) L. Zhang, J. Parente, S. M. Harris, D. E. Wods, R. E. W.
Hancock, T. J. Falla, Antimicrob. Agents Chemother. 2005, 49,
2921–2927; b) R. E. W. Hancock, Lancet infect. dis. 2001, 1,
156–164.
[4] M. M. Shemyakin, Yu. A. Ovchinnikov, V. T. Ivanov, I. D. Rya-
bova, Experientia 1967, 23, 326.
3
[17]
[18]
The JHNα in peptides is dependent on the dihedral angle φ
[C(O)-N(H)-Cα-C(O)] allowing the qualitative assignment of
secondary structureN. Ramachandran, R. Chandrasekaran,
K. D. Kopple, Biopolymers 1971, 10, 2113–2131.
The position of the Hα resonance signal of a residue in a par-
ticular peptide, relative to the value of that same residue in
a random coil configuration (the chemical shift perturbation,
∆δHα) can be used as an indication of the configuration of
that residue. A value of ∆δHα Ͼ 0.1 ppm indicates a β-strand,
–0.1 Ͻ ∆δHα Ͻ 0.1 indicates a rondam coil and ∆δHα Ͻ
–0.1 ppm indicates a helical configuration. D. S. Wishart, B. D.
Sykes, F. M. Richards, Biochemistry 1992, 31, 1647–1651.
K. Wüthrich, NMR of proteins and nucleic acids, John Wiley &
Sons, New York, 1986.
[5] a) E. J. Prenner, R. N. A. H. Lewis, R. N. McElhaney, Biochim.
Biophys. Acta 1999, 1462, 201–221; b) E. Staudegger, E. J.
Prenner, M. Kriechbaum, G. Degovics, R. N. A. H. Lewis,
R. N. McElhaney, K. Lohner, Biochim. Biophys. Acta 2000,
1468, 213–230; c) M. Kiricsi, L. I. Horváth, L. Dux, T. Páli, J.
Mol. Struct. 2001, 563–564, 469–475.
[6] a) M. Jelokhani-Niaraki, R. S. Hodges, J. E. Meissner, U. E.
Hassenstein, L. Weaton, Biophys. J. 2008, 95, 3306–3321; b) M.
Ashrafuzzaman, O. S. Anderson, R. N. McElhaney, Biochim.
Biophys. Acta 2008, 1778, 2814–2822.
[7] a) R. Pankiewicz, A. Gurzkowska, B. Brzezinski, G. Zundel,
F. Bartl, J. Mol. Struct. 2003, 646, 67–74; b) A. Stern, W. A.
Gibbons, L. C. Craig, Proc. Natl. Acad. Sci. USA 1968, 61,
734–741; c) S. E. Hull, R. Karlsson, P. Main, M. M. Woolfson,
E. J. Dodson, Nature 1978, 75, 206–207; d) A. L. Llamas-Saiz,
G. M. Grotenbreg, M. Overhand, M. J. van Raaij, Acta Crys-
tallogr., Sect. D 2007, 63, 401–407.
[8] See for examples a) S. L. Grage, A. V. Suleymanova, S. Afonin,
P. Wadhwani, A. S. Ulrich, J. Magn. Reson. 2006, 183, 77–86;
b) T. Abraham, R. N. A. H. Lewis, R. S. Hodges, R. N. McEl-
[19]
[20]
J. V. Olsen, L. M. F. de Godoy, G. Q. Li, B. Macek, P. Mort-
ensen, R. Pesch, A. Makarov, O. Lange, S. Horning, M. Mann,
Mol. Cell Proteomics 2005, 4, 2010–2021.
E. Kaiser, R. L. Colescott, C. D. Bossering, P. I. Cook, Anal.
Biochem. 1970, 34, 595.
[21]
Received: April 28, 2009
Published Online: July 21, 2009
Eur. J. Org. Chem. 2009, 4231–4241
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4241