C O M M U N I C A T I O N S
confirmed by X-ray analysis (Figure 1). Thus, the planar chirality
was preserved during the rearomatization process.
conservation of stereochemical information. This general methodol-
ogy corresponds to an addition/elimination (η6-η5)/(η5-η6) “round
trip” sequence using a cheap, commercialy available chiral nucleo-
phile. As it is compatible with the presence of a halide or an alkoxy
group, a huge field of applications involving functionalizations by
Pd cross-coupling reactions2b as well as by lithiation/electrophilic
quench2f,g,6 can be envisaged. This finding opens novel perspectives
for the development of (arene)tricarbonylmanganese complexes in
organometallic and organic enantioselective syntheses, as illustrated
in the present work by dearomatization of enantiopure meta-
disubstituted (arene)Mn(CO)3+ complexes into enantiopure 4-sub-
stituted and 3,4-disubstituted cyclohexenones.
Acknowledgment. We thank P. Herson (UMR 7201, UPMC,
Univ Paris 6) for the X-ray structure analysis, the Ecole Normale
Supe´rieure (Paris) for financial support to A.E., and CNRS for
financial support.
Figure 1. ORTEP views of complexes (R,2pR)-2a and (1pR)-1a.
We next investigated the potential of these enantiopure η6
complexes in the enantioselective synthesis of substituted cyclo-
hexenones 47 using a strategy of manganese-mediated double
nucleophilic addition (Scheme 4).2d,8 Regioselective meta addition
of LiAlH4 to the enantiopure m-chloro- and m-bromoanisole
complexes (-)-1b and (-)-1c yielded complexes (+)-3b and (+)-
3c, respectively. Dearomatization9 by addition of a second nucleo-
phile, LiC(CH3)2CN, to the C5 carbons of complexes (+)-3b and
(+)-3c, followed by FeCl3 oxidative demetalation of the anionic
η4-Mn intermediate and acidic hydrolysis, generated the corre-
sponding enantiopure 3-chloro- and 3-bromo-substituted 2-cyclo-
hexen-1-ones (+)-4b and (+)-4c in 76% yield. They could be easily
transformed by nucleophilic substitution of the halogeno groups
into a wide panel of chiral organic compounds. Treatment of (+)-
3c with 1 equiv of BuLi followed by hydrolysis gave the
enantiopure (η5-2-methoxycyclohexadienyl)Mn(CO)3 complex (-)-
3d, a key organometallic chiral synthon that cannot be obtained
through resolution of the (η6-anisole)Mn(CO)3 parent complex
because this monosubstituted complex has no planar chirality. By
the same procedure, the enantiopure 2-cyclohexen-1-one (+)-4d
was generated in 75% yield, as was the enone (+)-4e in 80% yield
by addition of LiCHPh2 as the second nucleophile (Scheme 4).
Supporting Information Available: Crystallographic data for
compounds (R, 2pR)-2a and (1pR)-1a (CIF) and full experimental
procedures with analytical data. This material is available free of charge
References
(1) (a) Bolm, C.; Muniz, K. Chem. Soc. ReV. 1999, 28, 51. (b) Salzer, A. Coord.
Chem. ReV. 2003, 242, 59. (c) Semmelhack, M. F.; Chlenov, A. Top.
Organomet. Chem. 2004, 7, 21. (d) McGlinchey, M. J.; Ortin, Y.; Seward,
C. M. In ComprehensiVe Organometallic Chemistry III; Crabtree, R. H.,
Mingos, D. M. P., Eds.; Elsevier: Oxford, U.K., 2006; Vol. 5, pp 201-289.
(e) Rosillo, M.; Dominguez, G.; Pe´rez-Castells, J. Chem. Soc. ReV. 2007,
36, 1589. (f) Astruc, D. Organometallic Complexes and Catalysis; Springer:
Berlin, 2007; pp 243-249.
(2) (a) Rose-Munch, F.; Rose, E. Eur. J. Inorg. Chem. 2002, 1269. (b) Auffrant,
A.; Prim, D.; Rose-Munch, F.; Rose, E.; Schouteeten, S.; Vaissermann, J.
Organometallics 2003, 22, 1898. (c) Prim, D.; Andrioletti, B.; Rose-Munch,
F.; Rose, E.; Couty, F. Tetrahedron 2004, 60, 3325. (d) Ku¨ndig, E. P.; Pape,
A. Top. Organomet. Chem. 2004, 7, 71. (e) Sweigart, D. A.; Reingold, J. A.;
Son, S. U. In ComprehensiVe Organometallic Chemistry III; Crabtree, R. H.,
Mingos, D. M. P., Eds.; Elsevier: Oxford, U.K., 2006; Vol. 5, Chapter 10,
pp 761-814. (f) Jacques, B.; Chavarot, M.; Rose-Munch, F.; Rose, E. Angew.
Chem., Int. Ed. 2006, 45, 3481. (g) Jacques, B.; Chanaewa, A.; Chavarot-
Kerlidou, M.; Rose-Munch, F.; Rose, E.; Ge´rard, H. Organometallics 2008,
27, 626.
(3) Son, S. U.; Park, K. H.; Lee, S. J.; Seo, H.; Chung, Y. K. Chem. Commun.
2002, 1230.
(4) The camphyl group has been shown to provide an interesting asymmetric
environment in Cr complexes. See: Paramahamsan, H.; Pearson, A. J.;
Pinkerton, A. A.; Zhurova, E. A. Organometallics 2008, 27, 900.
(5) Balssa, F.; Gagliardini, V.; Rose-Munch, F.; Rose, E. Organometallics 1996,
15, 4373.
Scheme 4. Preparation of Enantiopure 2-Cyclohexen-1-ones
(6) R is the absolute configuration of the C9 carbon atom of the camphyl group.
For the stereochemical description of the η5 complexes, see: Jacques, B.;
Eloi, A.; Chavarot-Kerlidou, M.; Rose-Munch, F.; Rose, E.; Ge´rard, H.;
Herson, P. Organometallics 2008, 27, 2505.
(7) Enantiopure 4-substituted cyclohexenones are useful building blocks for a
wide variety of natural products and for a number of synthetic transforma-
tions. See, for example: Evarts, J.; Torres, E.; Fuchs, P. L. J. Am. Chem.
Soc. 2002, 124, 11093.
(8) Roell, B. C.; McDaniel, K. F.; Vaughan, W. S.; Macy, T. S. Organometallics
1993, 12, 224.
(9) (a) Semmelhack, M. F.; Yamashita, A. J. Am. Chem. Soc. 1980, 102, 5924.
(b) Miles, W. H.; Brinkman, H. R. Tetrahedron Lett. 1992, 33, 589. (c)
Lee, T.-Y.; Kang, Y. K.; Chung, Y. K.; Pike, R. D.; Sweigart, D. A. Inorg.
Chim. Acta 1993, 214, 125. (d) Pearson, A. J.; Vickerman, R. J. Tetrahedron
Lett. 1998, 39, 5931. (e) Dudones, J. D.; Pearson, A. J. Tetrahedron Lett.
2000, 41, 8037. (f) Pape, A. R.; Kaliappan, K. P.; Ku¨ndig, E. P. Chem. ReV.
2000, 100, 2917.
In conclusion, our preliminary results describe the first resolution
of cationic ortho- and meta-disubstituted (η6-arene)Mn(CO)3 com-
plexes through D-(+)-camphor enolate addition, isomerization of
the C9 stereogenic center, separation of the corresponding η5-
cyclohexadienyl diastereoisomers, and then elimination of the chiral
auxiliary by a quantitative method of rearomatization with total
JA905712K
9
J. AM. CHEM. SOC. VOL. 131, NO. 40, 2009 14179