7926
S. Castro et al. / Tetrahedron 65 (2009) 7921–7926
4.8, 2.1 Hz, 1H), 4.75 (dd, J¼8.6, 7.4 Hz, 1H), 4.67 (d, J¼12.3 Hz, 1H),
4.60 (d, J¼12.3 Hz, 1H), 4.45 (dd, J¼9.9, 7.6 Hz, 1H), 4.27 (dd, J¼7.5,
3.1 Hz,1H), 4.22 (ddd, J¼8.5, 2.7, 1.6 Hz,1H), 3.83 (dd, J¼10.9, 2.1 Hz,
1H), 3.73 (dd, J¼11.0, 5.0 Hz, 1H), 1.53 (s, 3H), 1.40 (s, 3H); 13C NMR
4.8.1. (1S)-S-Phenyl-(5R,6R-[2,2]-dimethyl-1,3-dioxolo)-oxepan-4-
one (11). Obtained as a clear colorless oil. Rf 0.52 (7:3 Hex/EtOAc);
[
a
]
ꢀ406.9 (c 0.24, CHCl3); 1H NMR 400 MHz (CDCl3)
d 7.52–7.47
D
(m, 2H), 7.36–7.26 (m, 3H), 5.46 (dd, J¼10.1, 5.4 Hz, 1H), 4.65 (d,
J¼7.5 Hz, 1H), 4.47 (m, 2H), 4.01 (dd, J¼15.1, 3.5 Hz, 1H), 3.03 (dd,
J¼12.2, 5.3 Hz,1H), 2.93 (dd, J¼12.0,10.1 Hz,1H),1.57 (s, 3H), 1.42 (s,
100 MHz (CDCl3)
d 151.0, 138.3, 128.3, 127.6, 127.5, 108.1, 99.0, 77.9,
77.8, 74.8, 73.5, 70.2, 64.9, 26.3, 24.0; HRMS m/z for C17H22NaO5
calcd 329.1359, found 329.1351.
3H); 13C NMR 100 MHz (CDCl3)
d 201.6, 133.5, 131.9, 129.2, 128.0,
110.9, 83.0, 82.9, 74.2, 60.7, 43.4, 27.1, 25.6. HRMS m/z for
4.6.5. 1,6-Anhydro-7-O-benzyl-[4,5]-O-isopropylidene-3-O-acetyl-2-
C15H18O4SNa calcd 317.0824, found 317.0839.
deoxy-
yield. Rf 0.68 (7:3 Hex/EtOAc); [
400 MHz (CDCl3)
D-allosept-1-enitol (9c). Obtained as a pale yellow oil in 43%
a
]
D
þ35.2 (c 0.86, CHCl3); 1H NMR
4.8.2. (1R)-S-phenyl-(5R,6R-[2,2]-dimethyl-1,3-dioxolo)-oxepan-4-
d
7.41–7.28 (m, 5H), 6.30 (dd, J¼7.8, 2.3 Hz, 1H),
one (12). Obtained as a white solid. Mp 98.5–101.0 ꢁC; Rf 0.69 (7:3
5.89 (ddd, J¼10.2, 10.2 1.9 Hz, 1H), 4.67 (d, J¼12.3 Hz, 1H), 4.60 (d,
J¼12.3 Hz, 1H), 4.52 (dd, J¼10.5, 6.8 Hz, 2H), 4.38 (dd, J¼10.1, 6.8 Hz,
1H), 4.25–4.35 (m, 2H), 3.83 (dd, J¼10.9, 1.9 Hz, 1H), 3.72 (dd,
J¼10.9, 5.4 Hz, 1H), 2.14 (s, 3H), 1.45 (s, 3H), 1.37 (s, 3H); 13C NMR
Hex/EtOAc); [
a
]
D þ234.2 (c 0.49, CHCl3); 1H NMR 400 MHz (CDCl3)
d
7.58–7.42 (m, 2H), 7.38–7.26 (m, 3H), 5.17 (dd, J¼8.9, 4.2 Hz, 1H),
4.65 (d, J¼10.2, 6.9 Hz, 3H), 4.40 (ddd, J¼7.3, 7.3, 3.1 Hz, 1H), 4.20
(dd, J¼13.5, 7.2 Hz, 1H), 3.54 (dd, J¼13.5, 3.0 Hz, 1H), 3.43 (dd,
J¼11.6, 8.9 Hz, 1H), 2.87 (ddd, J¼11.7, 4.1, 1.0 Hz, 1H), 1.61 (s, 3H),
100 MHz (CDCl3)
d 170.3, 146.1, 128.4, 127.6, 109.7, 102.9, 78.9, 78.0,
74.5, 73.5, 70.4, 70.1, 27.6, 25.4, 21.2; HRMS m/z for C19H24O6Na
1.40 (s, 3H); 13C NMR 100 MHz (CDCl3)
d 203.1, 133.3, 132.6, 130.7,
calcd 371.1471, found 371.1441.
129.3, 129.2, 128.2, 112.0, 85.0, 82.9, 73.8, 66.3, 45.8, 27.2, 25.4;
HRMS m/z for C15H18O4SNa calcd 317.0824, found 317.0820.
4.6.6. 1,6-Anhydro-7-O-tert-butyldiphenylsilyl-[4,5]-O-isopro-
pylidene-3-O-acetyl-2-deox.y-
hydro-7-O-tert-butyldiphenylsilyl-[4,5]-O-isopropylidene-3-O-ace-
tyl-2-deoxy- -allosept-1-enitol (9d). This material was obtained as
clear colorless oil in 56% yield as a 3:1 mixture of diastereomers. Rf
0.5 (8:2 Hex/EtOAc); 1H NMR 300 MHz (CDCl3)
7.77–7.69 (m,16H),
D-altrosept-1-enitol (8d) and 1,6-an-
Acknowledgements
D
This research was supported by an NSF CAREER award to MWP
(CHE-0546311). The authors thank Martha D. Morton and Srikanth
Rapole for help collecting NMR and HRMS data, respectively. Nick E.
Leadbeater and C. Vijaya Kumar are thanked for loaned equipment
necessary for the photoisomerization reaction.
d
7.47–7.35 (m, 24H), 6.47 (d, J¼7.3 Hz, 1H), 6.28 (dd, J¼7.4, 2.2, Hz,
3H), 5.85 (ddd, J¼10.2, 1.8, 1.8 Hz, 3H), 5.29 (dd, J¼9.5, 3.1 Hz, 1H),
4.78 (dd, J¼8.6, 7.3 Hz, 1H), 4.54 (m, 4H), 4.37 (dd, J¼10.2, 6.9 Hz,
3H), 4.30 (dd, J¼7.6, 1.6 Hz, 3H), 4.16 (ddd, J¼7.2, 5.3, 2.1 Hz 1H),
4.05 (dd, J¼11.5, 1.6 Hz, 1H), 4.00–3.95 (m, 3H), 3.87 (dd, J¼11.3,
5.2 Hz, 1H), 2.13 (s, 9H), 2.06 (s,3H), 1.45 (s, 3H), 1.43 (s, 9H), 1.35 (s,
Supplementary data
Supplementary data associated with this article can be found in
12H), 1.09 (s, 9H), 1.08 (s, 27H); 13C NMR 75 MHz (CDCl3)
d 170.3,
170.1, 152.0, 146.3, 135.7, 135.7, 133.5, 133.4, 129.7, 129.6, 127.7, 127.6,
109.6, 108.9, 102.7, 100.0, 97.9, 79.9, 79.4, 78.9, 74.5, 74.3, 70.4, 67.6,
64.6, 64.5, 27.6, 26.8, 26.4, 25.4, 24.8, 21.5, 21.2, 19.4 (2); HRMS m/z
for C28H36O6SiNa calcd 519.2179, found 519.2159.
References and notes
1. Castro, S.; Duff, M.; Snyder, N. L.; Morton, M.; Kumar, C. V.; Peczuh, M. W. Org.
Biomol. Chem. 2005, 3, 3869–3872.
2. Tauss, A.; Steiner, A. J.; Stu¨tz, A. E.; Tarling, C. A.; Withers, S. G.; Wrodnig, T. M.
Tetrahedron: Asymmetry 2006, 17, 234–239.
3. Micheel, F.; Suckfu¨ll, F. Liebigs Ann. Chem. 1933, 502, 85–98.
4. Castro, S.; Fyvie, W. S.; Hatcher, S. A.; Peczuh, M. W. Org. Lett. 2005, 7,
4709–4712.
5. Peczuh, M. W.; Snyder, N. L.; Fyvie, W. S. Carbohydr. Res. 2004, 339, 1163–1171.
6. (a) Alcazar, E.; Pletcher, J. M.; McDonald, F. E. Org. Lett. 2004, 6, 3877–3880; (b)
Boone, M. A.; McDonald, F. E.; Lichter, J.; Lutz, S.; Caao, R.; Hardcastle, K. I. Org.
Lett. 2009, 11, 851–854.
4.7. (1R)-O-Methyl-(5R,6R-[2,2]-dimethyl-1,3-dioxolo)-
oxepan-4-one (10)
Compound 7b (0.18 g, 0.998 mmol) was dissolved in MeOH
(15 mL) and solid NaOMe (1.5 mg, 0.0278 mmol) was added to the
reaction. The mixture was stirred at rt for 30 h then concentrated in
vacuo. The residue was purified by column chromatography (3:1
Hex/EtOAc) to yield 105 mg (49%) of 10. Rf 0.37 (7:3 Hex/EtOAc);
7. Markad, S.; Xia, S.; Surana, B.; Morton, M. D.; Hadad, C. M.; Peczuh, M. W. J. Org.
Chem. 2008, 73, 6341–6354.
[
a
]
ꢀ117.7 (c 4.29, CHCl3); 1H NMR 300 MHz (CDCl3)
d 4.76 (dd,
D
8. Peczuh, M. W.; Snyder, N. L. Tetrahedron Lett. 2003, 44, 4057–4061.
9. Castro, S.; Peczuh, M. W. J. Org. Chem. 2005, 70, 3312–3315.
10. Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2003, 125, 7482–7483.
11. Wipf, P.; Graham, T. H. J. Org. Chem. 2003, 68, 8798–8807.
12. (a) Pitsch, W.; Russel, A.; Zabel, M.; Konig, B. Tetrahedron 2001, 57, 2345–2347;
(b) Pitsch, W. Synthese, Struktur und Eigenschaften funktionalisierter, cy-
clischer Endiine. Ph.D. Thesis, University of Regensburg, Regensburg, de, 2001.
13. Attempted cyclization in CHCl3 using PBu3 as promoter resulted in complex
product mixtures with low (<5%) product yield.
J¼7.1, 5.0 Hz,1H), 4.59 (d, J¼7.6 Hz,1H,), 4.38 (ddd, J¼7.5, 2.5, 1.5 Hz,
1H), 4.15 (dd,, J¼14.6, 1.1 Hz, 1H), 3.91 (dd, J¼14.6, 2.9 Hz, 1H), 3.38
(s, 3H), 2.90 (dd, J¼12.3, 5.0 Hz, 2H), 2.80 (dd, J¼12.2, 7.1 Hz, 1H),
1.57 (s, 3H), 1.40 (s, 3H); 13C NMR 75 MHz (CDCl3)
d 201.2, 110.8,
97.2, 83.1, 74.6, 58.5, 55.6, 43.5, 27.0, 25.6; HRMS m/z for
C10H16O5Na calcd 239.0895, found 239.0902.
14. Levallee, J.-F.; Berthiaume, G.; Deslongchamps, P.; Grein, F. Tetrahedron Lett.
1986, 27, 5455–5458.
4.8. Thiophenyl oxepanones 11 and 12
15. Compound 8c was consistently obtained without acetyl protection at C3 under
our standard acetylation conditions. Compound data reported are for the al-
cohol corresponding to 8c.
16. Singh, J.; Kaur, I.; Kaur, J.; Bhalla, A.; Kad, G. L. Synth. Commun. 2003, 33,
191–197.
17. Diagnostic NOEs are for protons that are suprafacial based on the assigned
stereochemistry. The NOESY spectrum and a graphical representation of the
noted cross peaks are in Supplementary data.
18. (a) Csuk, R.; Doerr, P. J. Carbohydr. Chem. 1995, 14, 35–44; (b) Mocerino, M.;
Stick, R. V. Tetrahedron Lett. 1990, 31, 3051–3054.
Compound 7b (0.18 g, 0.998 mmol) was dissolved in dry THF
(25 mL) and cooled to 0 ꢁC and Cs2CO3 (0.33 g, 0.998 mmol) was
added. To this mixture was added thiophenol (0.409 mL,
3.99 mmol) under N2. The solution was stirred at 0 ꢁC for 30 min
and the reaction was then quenched with H2O (20 mL) and
extracted with DCM (3ꢃ15 mL). The organic layers were combined,
dried over Na2SO4, and concentrated in vacuo. The crude material
was purified by column chromatography (3:1 Hex/EtOAc) yielding
8 and 9 in a combined yield of 0.189 g (64%, 1:1 dr).
19. (a) Sasaki, S.; Taniguchi, Y.; Takahashi, R.; Senko, Y.; Kodama, K.; Nagatsugi, F.;
Maeda, M. J. Am. Chem. Soc. 2004, 126, 516–528; (b) Ogura, H.; Takahashi, H.;
Itoh, T. J. Org. Chem. 1972, 37, 72–75.