ORGANIC
LETTERS
2009
Vol. 11, No. 20
4756-4759
An Unprecedented Oxidative
Wagner-Meerwein Transposition
Kimiaka C. Gue´rard, Cle´ment Chapelle, Marc-Andre´ Giroux, Cyrille Sabot,
Marc-Andre´ Beaulieu, Nabil Achache, and Sylvain Canesi*
Laboratoire de Me´thodologie et Synthe`se de Produits Naturels, UniVersite´ du Que´bec
a` Montre´al, C.P. 8888, Succ. Centre-Ville, Montre´al, H3C 3P8, Que´bec, Canada
Received August 27, 2009
ABSTRACT
An oxidative Wagner-Meerwein transposition involving different functionalities mediated by a hypervalent iodine reagent has been accomplished.
The strategy fits within the concept of “aromatic ring umpolung” and allows rapid access to highly functionalized cores.
One of the most remarkable transformations in organic
synthesis is probably transposition. Indeed, this process
allows the transformation of a simple structure into a variety
of more complex motifs. The Wagner-Meerwein and
pinacolic transpositions1 are among the most well-known of
these rearrangements. Moreover, electron-rich aromatic
compounds, such as phenols and their derivatives, normally
react as nucleophiles. However, an oxidative activation2-4
can transform these aromatics into very reactive electrophilic
species 2, which may be intercepted with appropriate
nucleophiles in synthetically useful yields. An indication of
how this objective can be achieved is apparent in the work
of Kita,2 who has shown that phenols may be activated under
the influence of hypervalent iodine reagents such as iodo-
benzene diacetate (DIB), an environmentally benign and
inexpensive reagent. This reaction is generally best performed
in solvents such as hexafluoroisopropanol (HFIP).2 If one
considers the behavior of the electrophilic species 2, this
reversal of reactivity may thus be thought of as involving
“aromatic ring umpolung”.5,6 This concept provides new
strategic opportunities in synthetic chemistry, by extension
of several well-known reactions in aliphatic chemistry to
aromatic chemistry. An oxidative extension of a transposition
could lead rapidly to a plethora of applications in total
synthesis. In this paper, we illustrate an extension to the
Wagner-Meerwein rearrangement to phenols that takes place
via an oxidative process (Figure 1).
As an initial investigation, we decided to test the feasibility
of an oxidative transposition. In this purpose, the corre-
sponding phenols 4 have been oxidized to generate the
(3) (a) Pelter, A.; Drake, R. A. Tetrahedron Lett. 1988, 29, 4181. (b)
Quideau, S.; Looney, M. A.; Pouyse´gu, L. J. Org. Chem. 1998, 63, 9597.
(c) Ozanne-Beaudenon, A.; Quideau, S. Angew. Chem., Int. Ed. 2005, 44,
7065. (d) Ciufolini, M. A.; Canesi, S.; Ousmer, M.; Braun, N. A.
Tetrahedron 2006, 62, 5318. (e) Ciufolini, M. A.; Braun, N. A.; Canesi,
S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis 2007, 24, 3759. (f) Be´rard,
D.; Jean, A.; Canesi, S. Tetrahedron Lett. 2007, 48, 8238. (g) Jean, A.;
Cantat, J.; Be´rard, D.; Bouchu, D.; Canesi, S. Org. Lett. 2007, 9, 2553. (h)
Pouyse´gu, L.; Chassaing, S.; Dejugnac, D.; Lamidey, A. M.; Miqueu, K.;
Sotiropoulos, J. M.; Quideau, S. Angew. Chem., Int. Ed. 2008, 47, 3552.
(i) Be´rard, D.; Racicot, L.; Sabot, C.; Canesi, S. Synlett 2008, 1076. (j)
Pouyse´gu, L.; Marguerit, M.; Gagnepain, J.; Lyvinec, G.; Eatherton, A. J.;
Quideau, S. Org. Lett. 2008, 10, 5211. (k) Zhdankin, V. V.; Stang, P. J.
Chem. ReV. 2008, 108, 5299, and citations therein. (l) Mendelsohn, B. A.;
Lee, S.; Kim, S.; Teyssier, F.; Aulakh, V. S.; Ciufolini, M. A. Org. Lett.
2009, 11, 1539. (m) Quideau, S.; Lyvinec, G.; Marguerit, Bathany, K.;
Ozanne-Beaudenon, A.; Bufeteau, T.; Cavagnat, D.; Chenede, A. Angew.
(1) (a) Fittig, R. Justus Liebigs Ann. Chem. 1860, 114, 54. (b) Wagner,
G. J. Russ. Chem. Soc. 1899, 31, 690. (c) Meerwein, H. Justus Liebigs
Ann. Chem. 1914, 405, 129.
(2) (a) Tamura, Y.; Yakura, T.; Haruta, J.; Kita, Y. J. Org. Chem. 1987,
52, 3927. (b) Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.;
Mitoh, S.; Sakurai, H.; Oka, S. J. Am. Chem. Soc. 1994, 116, 3684. (c)
Kita, Y.; Takada, T.; Gyoten, M.; Tohma, H.; Zenk, M. H.; Eichhorn, J. J.
Org. Chem. 1996, 61, 5854. (d) Kita, Y.; Gyoten, M.; Ohtsubo, M.; Tohma,
H.; Takada, T. Chem. Commun. 1996, 1481. (e) Takada, T.; Arisawa, M.;
Gyoten, M.; Hamada, R.; Tohma, H.; Kita, Y. J. Org. Chem. 1998, 63,
7698. (f) Arisawa, M.; Utsumi, S.; Nakajima, M.; Ramesh, N. G.; Tohma,
H.; Kita, Y. Chem. Commun. 1999, 469. (g) Akai, S.; Kawashita, N.; Morita,
N.; Nakamura, Y.; Iio, K.; Kita, Y. Heterocycles 2002, 58, 75. (h) Dohi,
T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka,
H.; Caemmerer, S. B.; Kita, Y. Angew. Chem., Int. Ed. 2008, 47, 3787. (i)
Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073
.
Chem., Int. Ed. 2009, 48, 4605.
10.1021/ol902000j CCC: $40.75
Published on Web 09/21/2009
2009 American Chemical Society