ORGANIC
LETTERS
2009
Vol. 11, No. 20
4636-4639
Highly Enantioselective Friedel-Crafts
Reaction of Thiophenes with
Glyoxylates: Formal Synthesis of
Duloxetine
Jakub Majer,† Piotr Kwiatkowski,†,‡ and Janusz Jurczak*,†,‡
Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland,
and Faculty of Chemistry, UniVersity of Warsaw, 02-093 Warsaw, Poland
Received August 17, 2009
ABSTRACT
An efficient Friedel-Crafts reaction of a series of 2-substituted thiophenes with alkyl glyoxylates has been developed using a catalytic amount
of an easy accessible 6,6′-dibromo-BINOL/Ti(IV) complex. A variety of hydroxy(thiophene-2-yl)acetates can be synthesized in high
enantioselectivites (92-98% ee) and good yields. This is the first report on the efficient asymmetric F-C reaction of thiophenes with alkyl
glyoxylates. Starting from simple thiophene and n-butyl glyoxylate, we demonstrated the formal synthesis of duloxetine.
The thiophene ring can be recognized in various biologically
active compounds with applications in medicine1 or agro-
chemistry,2 which often reveal higher activity compared to
analogous phenyl-type substituents.3 Structures containing
thiophenes are also useful in the synthesis of new materials4
and catalysts.5 Quite stabile S-metal bonds create the
possibility of using thiophene derivatives as ligands for
catalysis.5 Moreover, oligothiophenes are interesting materi-
als in organic electronics6 and in the preparation of fluores-
cent biosensors.7
We focused our attention on the enantioselective synthesis
of chiral derivatives of 2-thienylcarbinols directly from
simple thiophenes and reactive carbonyl compounds, e.g.,
glyoxylates. The Friedel-Crafts (F-C) hydroxyalkylation
reaction of this type seems to offer a very attractive, direct,
and atom-economic approach to the synthesis of hydroxy-
† Polish Academy of Sciences.
‡ University of Warsaw.
(4) (a) Yu, J.; Holdcroft, S. Chem. Mater. 2002, 14, 3705. (b)
Narasimhaswamy, T.; Somanathan, N.; Lee, D. K.; Ramamoorthy, A. Chem.
Mater. 2005, 17, 2013. (c) Querner, C.; Benedetto, A.; Demadrille, A.;
Rannou, P.; Reiss, P. Chem. Mater. 2006, 18, 4817.
(1) (a) Wu, C.; Decker, E. R.; Blok, N.; Bui, H.; You, T. J.; Wang, J.;
Bourgoyne, A. R.; Knowles, V.; Berens, K. L.; Holland, G. W.; Brock,
T. A.; Dixon, R. A. F. J. Med. Chem. 2004, 47, 1969. (b) Oberdorf, C.;
Schepmann, D.; Vela, J. M.; Diaz, J. L.; Holenz, J.; Wu¨nsch, B. J. Med.
Chem. 2008, 51, 6531. (c) Romagnoli, R.; Baraldi, P. G.; Carrion, M. D.;
Cara, C. L.; Cruz-Lopez, O.; Iaconinoto, M. A.; Preti, D.; Shryock, J. C.;
Moorman, A. R.; Vincenzi, F.; Varani, K.; Borea, P. A. J. Med. Chem.
2008, 51, 5875. (d) Wang, W. L.; Chai, S. C.; Huang, M.; He, H. Z.; Hurley,
T. D.; Ye, Q. Z. J. Med. Chem. 2008, 51, 6110.
(5) (a) Gao, J.; Martell, A. E. Org. Biomol. Chem. 2003, 1, 2801. (b)
Gao, M. Z.; Kong, D.; Clearfield, A.; Zingaro, R. A. Tetrahedron Lett.
2004, 45, 5649. (c) Bandini, M.; Benaglia, M.; Quinto, T.; Tommasi, S.;
Umani-Ronchi, A. AdV. Synth. Catal. 2006, 348, 1521. (d) Zhang, X. Q.;
Li, Y. Y.; Zhang, H.; Gao, J. X. Tetrahedron: Asymmetry 2007, 18, 2049.
(6) (a) Barbarella, G.; Melucci, M.; Sotgiu, G. AdV. Mater. 2005, 17,
1581. (b) Melucci, M.; Barbarella, G.; Gazzano, M.; Cavallini, M.; Biscarini,
F.; Bongini, A.; Piccinelli, F.; Monari, M.; Bandini, M.; Umani-Ronchi,
A.; Biscarini, P. Chem.sEur. J. 2006, 12, 7304.
(2) (a) Hwang, I. T.; Kim, H. R.; Jeon, D. J.; Hong, K. S.; Song, J. H.;
Cho, K. Y. J. Agric. Food Chem. 2005, 53, 8639. (b) Fokialakis, N.; Cantrell,
C. L.; Duke, S. O.; Skaltsounis, A. L.; Wedge, D. E. J. Agric. Food Chem.
2006, 54, 1651.
(7) Dore, K.; Dubus, S.; Ho, H.-A.; Levesque, I.; Brunette, M.; Corbeil,
G.; Boissinot, M.; Boivin, G.; Bergeron, M. G.; Boudreau, D.; Leclerc, M.
J. Am. Chem. Soc. 2004, 126, 4240.
(3) Lamberth, C.; Jeanguenat, A.; Cederbaum, F.; Mesmaeker, A.; Zeller,
M.; Kempf, H. J.; Zeun, R. Bioorg. Med. Chem. 2008, 16, 1531.
10.1021/ol901906r CCC: $40.75
Published on Web 09/18/2009
2009 American Chemical Society