1916 Chem. Mater., Vol. 22, No. 5, 2010
Zeng et al.
photosensitizers in DSCs. Moreover, the introduction
of dihexyl-substituted DTS featuring a tetrahedral silicon
center will not affect the planarity of π-conjugated spacer
but may significantly reduce the π-π stacking of dye
molecules on nanocrystals. An aggregation of dye mole-
cules on nanocrystals may lead to a dissipative intermo-
lecular charge transfer, which could have an adverse
effect on the cell efficiency.4o,6 Even with a preliminary
optimization this novel photosensitizer C219 has already
achieved a strikingly high efficiency of 10.0-10.3% mea-
sured under irradiation of AM1.5G full sunlight, in
contrast to 9.3% attained with the standard amphiphilic
ruthenium dye Z907 (Figure 1).
2. Experimental Section
2.1. Materials. All solvents and reagents, unless otherwise
stated, were of puriss quality and used as received. n-Butyl-
ithium, 2-cyanoacetic acid, guanidinium thiocyanate (GNCS),
tert-butylpyridine (TBP), and 3R,7R-dihyroxy-5β-cholic acid
(cheno) were purchased from Fluka. 3,30-Di-n-hexylsilylene-
2,20-bithiophene (1),7 1-(2-ethylhexyloxy)-4-iodobenzene (4),8
2-(tributylstannyl)-3,4-(ethylenedioxy)thiophene,9 and Z90710
were synthesized according to the corresponding literature
methods. The synthesis of 1,3-dimethylimidazolium iodide
(DMII) and 1-ethyl-3-methylimidazolium iodide (EMII) was
described in our previous paper.11 The scattering TiO2 paste
(WER2-O) and 1-ethyl-3-methylimidazolium tetracyanoborate
(EMITCB) were received as gifts from Dyesol. The synthetic
route of C219 is outlined in Scheme 1 and the details are
described as follows.
Figure 1. Molecular structures of Z907 and C219.
orbital (HOMO) properly, and dihexyl-substituted
dithienosilole (DTS)5 conjugated with A keeps a suitable
lowest unoccupied molecular orbital (LUMO). This is the
first time that DTS has been used in the design of
(4) For example, see: (a) Hara, K.; Kurashige, M.; Dan-oh, Y.;
Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. New
J. Chem. 2003, 27, 783. (b) Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue,
T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S. Chem. Mater. 2004,
16, 1806. (c) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am.
Chem. Soc. 2004, 126, 12218. (d) Thomas, K. R. J.; Lin, J. T.; Hsu,
Y.-C.; Ho, K.-C. Chem. Commun. 2005, 4098. (e) Chen, Y.; Zeng, Z.;
Li, C.; Wang, W.; Wang, X.; Zhang, B. New. J. Chem. 2005, 29, 773.
(f) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt,
A.; Sun, L. Chem. Commun. 2006, 2245. (g) Li, S.-L.; Jiang, K.-J.;
Shao, K.-F.; Yang, L.-M. Chem. Commun. 2006, 2792. (h) Koumura,
N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am.
Chem. Soc. 2006, 128, 14256. (i) Kim, S.; Lee, J. W.; Kang, S. O.; Ko,
J.; Yum, J.-H.; Fantacci, S.; De Angellis, F.; Di Censo, D.; Nazeeruddin,
Synthesis of 3,30-Di-n-hexylsilylene-2,20-bithiophene-5-carbal-
dehyde (2). To a cold solution of 1 (1.46 g, 4.03 mmol) and N,N-
dimethylformide (0.35 g, 4.84 mmol) in 1,2-dichloroethane
(10 mL) at 0 °C was added phosphorus chloride oxide (0.74 g,
4.84 mmol). The reaction solution was heated to 80 °C, stirred
for 4 h, and then saturated sodium acetate aqueous solution
(20 mL) added. The mixture was further stirred at room
temperature for 30 min. The crude product was extracted into
dichloromethane, and the organic layer was washed with brine
and water, and dried over anhydrous sodium sulfate. After
removing solvent under reduced pressure, the residue was
purified by column chromatography (dichloromethane/petro-
leum ether 60-90 °C, 2/1, v/v) on silica gel to yield a colorless oil
€
M. K.; Gratzel, M. J. Am. Chem. Soc. 2006, 128, 16701. (j) Wang,
Z.-S.; Cui, Y.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A. Adv.
Mater. 2007, 19, 1138. (k) Edvinsson, T.; Li, C.; Pschirer, N.;
€
Schoneboom, J.; Eickemeyer, F.; Sens, R.; Boschloo, G.; Herrmann,
A.; M€ullen, K.; Hagfeldt, A. J. Phys. Chem. C 2007, 111, 15137. (l) Ito,
S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.;
ꢀ
€
Pechy, P.; Gratzel, M. Chem. Commun. 2008, 5194. (m) Thomas, K. R.
J.; Hsu, Y.-C.; Lin, J. T.; Lee, K.-M.; Ho, K.-C.; Lai, C.-H.; Cheng,
Y.-M.; Chou, P.-T. Chem. Mater. 2008, 20, 1830. (n) Zhou, G.;
1
(96% yield). H NMR (600 MHz, DMSO-d6) δ: 9.87 (s, 1H),
8.05 (s, 1H), 7.41 (d, J = 4.8 Hz, 1H), 7.12 (d, J = 4.8 Hz, 1H),
1.30 (m, 4H), 1.21 (m, 4H), 1.16 (m, 8H), 0.95 (t, J = 6.8 Hz,
4H), 0.78 (t, J = 6.8 Hz, 6H). 13C NMR (150 MHz, DMSO-d6)
δ: 183.73, 156.85, 146.86, 146.58, 144.06, 142.81, 141.18, 130.63,
€
Pschirer, N.; Schoneboom, J. C.; Eickemeyer, F.; Baumgarten, M.;
M€ullen, K. Chem. Mater. 2008, 20, 1808. (o) Wang, Z.-S.; Koumura,
N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube,
A.; Hara, K. Chem. Mater. 2008, 20, 3993. (p) Lin, J. T.; Chen, P.-C.;
Yen, Y.-S.; Hsu, Y.-C.; Chou, H.-H.; Yeh, M.-C. P. Org. Lett. 2009, 11,
97. (q) Tian, H.; Yang, X.; Cong, J.; Chen, R.; Liu, J.; Hao, Y.; Hagfeldt,
A.; Sun, L. Chem. Commun. 2009, 6288. (r) Tian, H.; Yang, X.; Chen,
R.; Hagfeldt, A.; Sun, L. Energy Environ. Sci. 2009, 2, 674. (s) Teng,
C.; Yang, X.; Yuan, C.; Li, C.; Chen, R.; Tian, H.; Li, S.; Hagfeldt, A.;
Sun, L. Org. Lett. 2009, 11, 5542. (t) Kumaresan, D.; Thummel, R. P.;
Bura, T.; Ulrich, G.; Ziessel, R. Chem.;Eur. J. 2009, 15, 6335.
(u) Wang, Z.-S.; Koumura, N.; Cui, Y.; Miyashita, M.; Mori, S.; Hara,
K. Chem. Mater. 2009, 21, 2810. (v) Song, J.; Zhang, F.; Li, C.; Liu,
W.; Li, B.; Huang, Y.; Bo, Z. J. Phys. Chem. C 2009, 113, 13391. (w)
(6) Wang, X.-F.; Kitao, O.; Zhou, H.; Tamiaki, H.; Sasaki, S.-i. J.
Phys. Chem. C 2009, 113, 7954.
(7) (a) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M.
A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 7670. (b) Hou, J. H.;
Chen, H.- Y.; Zhang, S. Q.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008,
130, 16144. (c) Beaujuge, P. M.; Pisula, W.; Tsao, H. N.; Ellinger, S.;
M€ullen, K.; Reynolds, J. R. J. Am. Chem. Soc. 2009, 131, 7514. (d)
Huo, L.; Chen, H.-Y.; Hou, J.; Chen, T. L.; Yang, Y. Chem. Commun.
2009, 5570.
ꢁ
Preat, J.; Michaux, C.; Jacquemin, D.; Perpete, E. A. J. Phys. Chem. C
2009, 113, 16821. (x) Li, Q.; Lu, L.; Zhong, C.; Shi, J.; Huang, Q.; Jin,
X.; Peng, T.; Qin, J.; Li, Z. J. Phys. Chem. B 2009, 113, 14588. (y) Liu,
B.; Zhu, W.; Zhang, Q.; Wu, W.; Xu, M.; Ning, Z.; Xie, Y.; Tian, H.
Chem. Commun. 2009, 1766 and references cited therein. (z) Mishra,
(8) Hiroko, Y.; Ikuyoshi, T.; Kazuchika, O.; Takeshi, E. Mol. Cryst.
Liq. Cryst. A 2001, 369, 47.
(9) Zhu, S. S.; Swager, T. M. J. Am. Chem. Soc. 1997, 119, 12568.
(10) Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J.-E.; Teuscher,
J.; Kantlehner, W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.;
€
A.; Fischer, M. K. R.; Bauerle, P. Angew. Chem., Int. Ed. 2009, 48,
€
Gratzel, M. J. Am. Chem. Soc. 2005, 127, 6850.
(11) Cao, Y.; Zhang, J.; Bai, Y.; Li, R.; Zakeeruddin, S. M.; Gratzel, M.;
2474 and references cited therein.
(5) (a) Ohshita, J. Macromol. Chem. Phys. 2009, 210, 1360. (b) Zhan, X.;
Barlow, S.; Marder, S. R. Chem. Commun. 2009, 1948.
€
Wang, P. J. Phys. Chem. C 2008, 112, 13775.