Scaffold Synthesis for Tweezer Receptors
[4]
[5]
a) R. Boyce, G. Li, H. P. Nester, T. Suenaga, W. C. Still, J. Am.
Chem. Soc. 1994, 116, 7955–7956; b) H. Wennemers, M. C.
Nold, M. M. Conza, K. J. Kulicke, M. Neuburger, Chem. Eur.
J. 2003, 9, 442–448.
a) M. C. F. Monnee, A. J. Brouwer, R. M. J. Liskamp, QSAR
Comb. Sci. 2004, 23, 546–559; b) E.-H. Ryu, J. Yan, Z. Zhong,
Y. Zhao, J. Org. Chem. 2006, 71, 7205–7213; c) D. Y. Maeda,
S. S. Mahajan, W. M. Atkins, J. A. Zebala, Bioorg. Med. Chem.
Lett. 2006, 16, 3780–3783.
concentrated in high vacuum at room temperature. Diethyl ether
(20 mL) was added and the resulting suspension was centrifuged.
The supernatant solvent was decanted and the solid was washed
with diethyl ether and centrifuged again. The raw product was dis-
solved in little methanol, water (30 mL) and TFA (1 mL) were
added and the mixture was freeze dried in vacuo. The resulting
solid was purified by MPLC on C18 reversed-phase silica gel (water
to methanol in 45 min, 0.1% TFA) to give 11 as voluminous white
solid (51 mg, 45%). HPLC: 5 min water (0.1% TFA), then in
35 min to methanol (0.1% TFA), 1 mL/ min, TR = 26.4 min
[6]
[7]
J. Shepherd, T. Gale, K. B. Jensen, J. D. Kilburn, Chem. Eur. J.
2006, 12, 713–720.
(250 nm), m.p. 245 °C. FT-IR (KBr disk): ν = 3291 (w), 1661 (s),
For additional examples see: a) H. De Muynck, A. Madder, N.
Farcy, P. J. De Clercq, M. N. Pérez-Payán, L. M. Öhberg, A. P.
Davis, Angew. Chem. Int. Ed. 2000, 39, 145–148; b) P. Virta, J.
Rosenberg, T. Karskela, P. Heinonen, H. Lönnberg, Eur. J. Org.
Chem. 2001, 3467–3473; c) T. Karskela, P. Heinonen, P. Virta,
H. Lönnberg, Eur. J. Org. Chem. 2003, 1687–1691; d) A. Gea,
N. Farcy, N. R. i Rossell, J. C. Martins, P. J. De Clercq, A.
Madder, Eur. J. Org. Chem. 2006, 4135–4146; e) D. Verzele, A.
Madder, Eur. J. Org. Chem. 2007, 1793–1797; f) S. E.
Van der Plas, E. Van Hoeck, F. Lynen, P. Sandra, A. Madder,
Eur. J. Org. Chem. 2009, 1796–1805.
a) C. Schmuck, L. Geiger, Chem. Commun. 2005, 6, 772–774;
b) S. M. Mennen, S. J. Miller, J. Org. Chem. 2007, 72, 5260–
5269; c) H.-B. Zhou, G.-S. Liu, Z.-J. Yao, J. Org. Chem. 2007,
72, 6270–6272; d) J. B. Paine III, J. Org.. Chem. 2008, 73, 4939–
4948.
a) M. G. Rowlands, M. A. Bunnet, A. B. Foster, M. Jarman, J.
Stanek, E. Schweizer, J. Med. Chem. 1988, 31, 971–976; b) K.
Kurz, M. W. Göbel, Helv. Chim. Acta 1996, 79, 1967–1979.
a) M. A. Reynolds, T. A. Beck, P. B. Say, D. A. Schwartz, B. P.
Dwyer, W. J. Daily, M. M. Vaghefi, M. D. Metzler, R. E. Klem,
L. J. Arnold Jr., Nucleic Acids Res. 1996, 24, 760–765; b) K. J.
Wallace, R. Hanes, E. Anslyn, J. Morey, K. V. Kilway, J. Siegel,
Synthesis 2005, 12, 2080–2083.
a) G. J. Atwell, W. A. Denny, Synthesis 1984, 1032; b) A. R.
Jacobson, A. N. Makris, L. M. Sayre, J. Org. Chem. 1987, 52,
2592–2594; c) P. Krapcho, C. S. Kuell, Synth. Commun. 1990,
20, 2559–2564; d) F. Hahn, U. Schepers, J. Comb. Chem. 2008,
10, 267–273.
˜
1536 (s), 1429 (m), 1282 (w), 1197 (m), 1130 (s), 986 (s), 721 (w),
610 (m) cm–1. 1H NMR (600 MHz, [D6]DMSO): δ = 1.25–1.41 (m,
8 H), 1.47–1.57 (m, 5 H), 1.58–1.64 (m, 1 H), 1.66–1.77 (m, 2 H),
3
3
1.79–1.93 (m, 2 H), 1.98 (t, J = 8.3 Hz, 1 H), 2.12 (t, J = 7.9 Hz,
1 H), 2.70–2.79 (m, 4 H, CH2), 3.95–4.09 (m, 2 H), 4.19–4.37 (m,
7 H), 5.58 (d, 3J = 7.9 Hz, 1 H, CH), 6.76–6.84 (m, 1 H), 6.86–6.91
(m, 1 H), 7.17–7.21 (m, 1 H), 7.23 (s, 1 H), 7.25–7.38 (m, 5 H), 7.42
3
(t, J = 7.4 Hz, 2 H), 7.63 (s, 2 H), 7.92–8.01 (m, 1 H), 8.13 (br. s,
3
3 H, NH3+), 8.32–8.36 (m, 1 H), 8.38 (br. s, 2 H, NH2), 8.42 (t, J
3
[8]
= 5.8 Hz, 1 H), 8.52–8.62 (m, 3 H), 8.63–8.67 (m, 1 H), 8.74 (d, J
= 7.2 Hz, 1 H, NH), 8.77 (d, 3J = 7.6 Hz, 1 H, NH), 8.85 (br. s,
3
2 H, NH2), 8.97 (d, J = 7.5 Hz, 1 H, NH), 9.14 (d, 3J = 8.1 Hz,
1 H, NH), 11.64 (br. s, 1 H, NH), 12.30 (s, 1 H, NH) ppm. 13C
NMR (150 MHz, [D6]DMSO): δ = 17.2 (CH3), 22.0 (CH2), 22.3
(CH2), 26.4 (CH2), 26.6 (CH2), 27.8 (CH2), 27.9 (CH2), 31.0 (CH2),
31.1 (CH2), 38.5 (CH2), 44.7 (CH2), 44.8 (CH2), 47.8 (CH), 51.8
(CH), 52.5 (CH), 52.7 (CH), 55.7 (CH), 56.0 (CH), 112.7 (CHar),
115.4 (CHar), 124.6 (CHar), 126.6 (CHar), 127.4 (CHar), 127.7
(CHar), 128.3 (CHar), 128.4 (CHar), 128.8 (CHar), 132.1 (CO), 134.3
(CO), 137.6 (CO), 138.4 (CO), 139.1 (CO), 139.4 (CO), 155.3 (CO),
158.3 (CO), 158.6 (CO), 159.9 (CO), 167.0 (CO), 167.8 (CO), 167.9
(CO), 169.3 (CO), 170.8 (CO), 171.5 (CO), 173.6 (CO) ppm. HR-
[9]
[10]
[11]
+
MS (MALDI-TOF): m/z calculated for C47H70N17O10 [M – 5
TFA + H+] 1032.548; found 1032.556.
[12] a) A. W. Schwabacher, J. W. Lane, M. W. Schiesher, K. M.
Leigh, C. W. Johnson, J. Org. Chem. 1998, 63, 1727–1729; b)
J. W. Lee, S. I. Jun, K. Kim, Tetrahedron Lett. 2001, 42, 2709–
2711.
Acknowledgments
Financial support of our work from the Deutsche Forschungsge-
meinschaft (DFG) and the Fonds der Chemischen Industrie is
gratefully acknowledged. H. Y. K. would like to thank the Studien-
stiftung des Deutschen Volkes for a PhD scholarship.
[13] Due to the use of Boc as the second protection group on the
template, in the first arm of the receptor amino acid side chains
have to be Cbz and benzyl-protected instead of Boc or tBu.
However, these amino acids are commercially available. Alter-
natively, of course our synthetic method allows to also intro-
duce other combination of protection groups onto the template
which might be more useful for a specific application.
[14] E. Kaiser, R. L. Colescott, Anal. Biochem. 1970, 34, 595–598.
[15] W. C. Chan, P. D. White, Fmoc Solid Phase Peptide Synthesis –
A Practical Approach, 1st ed., Oxford University Press, New
York, 1999.
[1] C. Schmuck, P. Wich, Top. Curr. Chem. 2007, 277, 3–30.
[2] a) S. C. Zimmerman, W. Wu, Z. Zeng, J. Am. Chem. Soc. 1991,
113, 196–201; b) S. R. Labrenz, J. W. Kelly, J. Am. Chem. Soc.
1995, 117, 1655–1656; c) H. Wennemers, S. S. Yoon, W. C. Still,
J. Org. Chem. 1995, 60, 1108–1109; d) C. Gennari, H. P. Nes-
tler, B. Salom, W. C. Still, Angew. Chem. Int. Ed. Engl. 1995,
34, 1765–1768; e) Y. Cheng, T. Suenaga, W. C. Still, J. Am.
Chem. Soc. 1996, 118, 1813–1814; f) J. D. Kilburn, M. Bradley, [16] L. A. Carpino, J. Am. Chem. Soc. 1993, 115, 4397.
M. Davies, M. Bonnat, F. Guilier, J. Org. Chem. 1998, 63,
8696–8703; g) J. D. Kilburn, T. Fessmann, Angew. Chem. Int.
Ed. 1999, 38, 1993–1996; h) J. D. Kilburn, T. Braxmeier, M.
Demarcus, T. Fessmann, S. McAteer, Chem. Eur. J. 2001, 7,
1889–1898; i) J. D. Kilburn, K. B. Jensen, T. M. Braxmeier, M.
Demarcus, J. G. Frey, Chem. Eur. J. 2002, 8, 1300–1309; j) F. G.
Klärner, T. Schrader, M. Fokkens, J. Am. Chem. Soc. 2005,
127, 14415–14421.
[17] a) C. Schmuck, Chem. Eur. J. 2000, 6, 709–718; b) C. Schmuck,
M. Heil, K. Baumann, J. Scheiber, Angew. Chem. Int. Ed. 2005,
44, 7208–7212; c) C. Schmuck, L. Geiger, J. Am. Chem. Soc.
2005, 127, 10486–10487; d) C. Schmuck, L. Geiger, Chem.
Commun. 2005, 772–774.
[18] a) P. G. Katsoyannis, D. T. Gish, G. P. Hess, V. Du Vigneuad,
J. Am. Chem. Soc. 1971, 93, 2558–2562; b) G. B. Fields, R. L.
Noble, Int. J. Pept. Protein Res. 1990, 35, 161–214; c) P. Rovero,
S. Pegoraro, F. Bonelli, A. Triolo, Tetrahedron Lett. 1993, 34,
2199–2200.
[3] a) H. Wennemers, M. M. Conza, M. C. Nold, P. Krattiger,
Chem. Eur. J. 2001, 7, 3342–3347; b) D. W. P. M. Löwik, M. D.
Weingarten, M. Broekema, A. J. Bouwer, W. C. Still, R. M. J.
Liskamp, Angew. Chem. Int. Ed. 1998, 37, 1846–1850.
Received: May 14, 2009
Published Online: July 27, 2009
Eur. J. Org. Chem. 2009, 4480–4485
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4485