5558
H. J. Jung et al. / Tetrahedron Letters 50 (2009) 5555–5558
Figure 7. Energy minimized structure of receptor 2 and its complexes with Cu2+ or Fe3+ as obtained by the MacroModel calculation.
9. (a) Amir, R. J.; Popkov, M.; Lerner, R. A.; Barbas, C. F., III; Shabat, D. Angew.
investigations were performed in aqueous acetonitrile, and the
receptor exhibited a dual fluorescence emission which is quenched
upon addition of Cu2+ or Fe3+. The receptor acted as a ratiometric
fluorescent probe over a wide concentration range of Cu2+ and
Fe3+. The receptor offered an interesting property of molecular
‘OR’ logic gate.
Chem., Int. Ed. 2005, 44, 4378; (b) de Groot, F. M.; Damem, E. W.; Scheeren, H.
W. Curr. Med. Chem. 2001, 8, 1093.
10. (a) Zheng, Y.; Gattas-Asfura, K. M.; Konka, V.; Leblanc, R. M. Chem. Commun.
2002, 2350; (b) Torrado, A.; Walkup, G. K.; Imperiali, B. J. Am. Chem. Soc.
1998, 120, 609; (c) Corradini, R.; Dossena, A.; Galaverna, G.; Marchelli, R.;
Panagia, A.; Sartor, G. J. Org. Chem. 1997, 62, 6283; (d) Fabbrizzi, L.; Licchelli,
M.; Pallavicini, P.; Perotti, A.; Sacchi, D. Angew. Chem., Int. Ed. 1994, 106,
2051.
11. (a) Lee, G. W.; Singh, N.; Jung, H. J.; Jang, D. O. Tetrahedron Lett. 2009, 50, 807;
(b) Singh, N.; Lee, G. W.; Jang, D. O. Tetrahedron 2008, 64, 1482; (c) Lee, G. W.;
Singh, N.; Jung, H. J.; Jang, D. O. Tetrahedron Lett. 2008, 49, 1952; (d) Jung, H. J.;
Singh, N.; Jang, D. O. Tetrahedron Lett. 2008, 49, 2960; (e) Singh, N.; Jang, D. O.
Org. Lett. 2007, 9, 1991; (f) Joo, T. Y.; Singh, N.; Lee, G. W.; Jang, D. O.
Tetrahedron Lett. 2007, 48, 8846; (g) Moon, K. S.; Singh, N.; Lee, G. W.; Jang, D.
O. Tetrahedron 2007, 63, 9106; (h) Kim, H. S.; Moon, K. S.; Jang, D. O. Supramol.
Chem. 2006, 18, 97; (i) Kang, J.; Kim, H. S.; Jang, D. O. Tetrahedron Lett. 2005, 46,
6079.
Acknowledgment
This work was supported by the Center for Bioactive Molecular
Hybrids.
Supplementary data
12. (a) Blomberg, M. R. A.; Siegbahn, P. E. M.; Wikstrom, M. Inorg. Chem. 2003, 42,
5231; (b) Yamamoto, S.; Takeda, H.; Maki, Y.; Hayaishi, O. J. Biol. Chem. 1969,
244, 2951; (c) Cartwright, G. E.; Gubler, C. J.; Wintrobe, M. M. J. Biol. Chem.
1957, 224, 533.
Supplementary data associated with this article can be found, in
13. Synthesis of compound 1:
A solution of 2-aminobenzimidazole (100 mg,
a0-dibromo-m-xylene (100 mg, 0.38 mmol), and KOH (21 mg,
References and notes
0.76 mmol),
a,
0.38 mmol) in acetone (30 mL) was stirred at room temperature for 24 h. Upon
completion of the reaction, cold water was added to the reaction mixture, and
then solid was separated out. The solid material was filtered and washed with
diethylether affording a white solid (120 mg, 86%); mp 284–285 °C; 1H NMR
(DMSO-d6, 400 MHz) d 5.22 (s, 4H, –CH2), 6.55 (s, 4H, –NH2), 6.77–6.81 (m, 2H,
Ar), 6.90–6.97 (m, 6H, Ar), 7.12–7.14 (m, 2H, Ar), 7.20–7.24 (m, 1H, Ar), 7.28 (s,
1H, Ar); 13C NMR (DMSO-d6, 100 MHz) d 107.9, 114.7, 118.1, 120.5, 125.8,
126.1, 128.8, 134.1, 137.5, 142.9, 155.0. Anal. Calcd for C32H20N6: C, 71.72; H,
5.47; N, 22.81. Found: C, 71.71; H, 5.45; N, 22.60.
1. Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596.
2. (a) Zhu, L.; Wu, W.; Zhu, M.-Q.; Han, J. J.; Hurst, J. K.; Li, A. D. Q. J. Am. Chem. Soc.
2007, 129, 3524; (b) Katayev, E. A.; Ustynyuk, Y. A.; Sessler, J. L. Coord. Chem.
Rev. 2006, 250, 3004; (c) Gale, P. A. Acc. Chem. Res. 2006, 39, 465; (d) Yoon, J.;
Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. Rev. 2006, 35, 355; (e) Martínez-
Máñez, R.; Sancenón, F. Chem. Rev. 2003, 103, 4419.
3. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C.
P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
4. (a) Schliche, B.; Belser, P.; De Cola, L.; Sabbioni, E.; Balzani, V. J. Am. Chem. Soc.
1999, 121, 4207; (b) Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.;
Shedlock, N. F.; Burgin, T. P.; Jones, L., II; Allara, D. L.; Tour, J. M.; Weiss, P. S. J.
Am. Chem. Soc. 1998, 120, 2721.
5. (a) Ashton, P. R.; Balzani, V.; Becher, J.; Credi, A.; Fyfe, M. C. T.; Mattersteig, G.;
Menzer, S.; Nielsen, M. B.; Raymo, F. M.; Stoddart, J. F.; Venturi, M.; Williams, D.
J. J. Am. Chem. Soc. 1999, 121, 3951; (b) Debreczeny, M. P.; Svec, W. A.;
Wasielewski, M. R. Science 1999, 274, 5287; (c) Gosztola, D.; Niemczyk, M. P.;
Wasielewski, M. R. J. Am. Chem. Soc. 1998, 120, 5118.
Synthesis of compound 2: A solution of compound 1 (108 mg, 0.29 mmol) and
salicyaldehyde (127 mg, 0.73 mmol) along with
a catalytic amount of
Zn(ClO4)2 in MeOH (30 mL) was stirred at room temperature for 12 h. The
progress of the reaction was monitored by TLC. Upon completion of the
reaction, the reaction mixture was treated with NaBH4 (219 mg, 5.8 mmol) at
room temperature for 4 h. The solvent was evaporated, and water was poured
into the reaction mixture. After neutralization with 1 M HCl, the organic
material was extracted with CH3Cl. The organic layer was dried over anhydrous
MgSO4. After filtration and evaporation, the residue was purified by column
chromatography on silica gel (hexanes/EtOAc, 6: 4) to give a white solid
(122 mg, 72%); mp 253–255 °C; 1H NMR (CD3CN, 400 MHz) d 4.39 (d, 4H, –CH2,
J = 6.4 Hz), 5.01 (s, 4H, –CH2), 6.14 (br, 2H, –NH), 6.79–6.83 (m, 4H, Ar), 6.95–
7.00 (m, 5H, Ar), 7.04–7.10 (m, 4H, Ar), 7.12–7.14 (m, 2H, Ar), 7.15–7.19 (m, 3H,
Ar), 7.33–7.35 (m, 2H, Ar), 12.38 (br, 2H, –OH); 13C NMR (CD3CN, 100 MHz) d
44.0, 46.5, 109.7, 116.3, 120.0, 120.9, 121.5, 123.0, 126.8, 127.7, 128.2, 130.6,
130.8, 133.0, 135.7, 138.2, 141.5, 156.3, 158.2. Anal. Calcd for C36H32N6O2: C,
74.46; H, 5.55; N, 14.47. Found: C, 74.42; H, 5.57; N, 14.46.
6. (a) Gao, F. G.; Bard, A. J. J. Am. Chem. Soc. 2000, 122, 7426; (b) Martin, A. S.;
Sambles, J. R. Nanotechnology 1996, 7, 401.
7. (a) de Silva, A. P.; Uchiyama, S. Nat. Nanotechnol. 2007, 2, 399; (b) Saghatelian,
A.; Volcker, N. H.; Guckian, K. M.; Lin, V. S. Y.; Ghadiri, M. R. J. Am. Chem. Soc.
2003, 125, 346; (c) de Silva, A. P.; Dixon, I. M.; Gunaratne, H. Q. N.;
Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. J. Am. Chem. Soc. 1999, 121,
1393; (d) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. J. Am. Chem. Soc. 1997,
119, 7891; (e) Credi, A.; Balzani, V.; Langford, S. J.; Stoddart, J. F. J. Am. Chem.
Soc. 1997, 119, 2679; (f) deSilva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature
1993, 364, 42; (g) Kou, S.; Lee, H. N.; Noort, D. V.; Swamy, K. M. K.; Kim, S. H.;
Soh, J. H.; Lee, K.-M.; Nam, S.-W.; Yoon, J.; Park, S. Angew. Chem., Int. Ed. 2008,
47, 872.
14. (a) Banthia, S.; Samanta, A. J. Phys. Chem. B 2006, 110, 6437; (b) Grynkiewicz,
G.; Poenie, M.; Tsien, R. Y. J. Biol. Chem. 1985, 260, 3440.
15. Job, P. Ann. Chim. 1928, 9, 113.
16. Benesi, H.; Hildebrand, H. J. Am. Chem. Soc. 1949, 71, 2703.
8. McSkimming, G.; Tucker, J. H. R.; Bouas-Laurent, H.; Desvergne, J.-P. Angew.
Chem., Int. Ed. 2000, 39, 2167.
17. Mohamed, F.; Richards, N. G. T.; Liskamp, W. C. H.; Lipton, M.; Caufield, C.;
Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440.