pubs.acs.org/joc
transformations due to their high chemoselectivity, mild reac-
Preparation, X-ray Structure, and Oxidative
Reactivity of N-(2-Iodylphenyl)tosylamides and
2-Iodylphenyl Tosylate: Iodylarenes Stabilized by
Ortho-Substitution with a Sulfonyl Group
tion conditions, and environmentally benign nature. Cyclic
and pseudocyclic hypervalent iodine reagents based on the
benziodoxole system represent an especially important class of
iodanes with rich and synthetically useful chemistry. In parti-
cular, the heterocyclic λ5-iodane, 1-hydroxy-1-oxo-1H-1λ5-
benzo[d][1,2]iodoxol-3-one (1), known under the name of its
tautomeric form of 2-iodoxybenzoic acid (IBX), has received
widespread application in organic synthesis as a highly efficient
and mild oxidant that can be used for selective oxidation of
primary and secondary alcohols and for a variety of other
important oxidations.1,2 However, the explosive character and
low solubility of IBX in common organic solvents except
DMSO restrict practical application of this reagent.
Artur K. Mailyan, Ivan M. Geraskin, Victor N. Nemykin,*
and Viktor V. Zhdankin*
Department of Chemistry and Biochemistry, University of
Minnesota-Duluth, Duluth, Minnesota 55812
Received July 28, 2009
New tosyl derivatives of 2-iodylaniline and 2-iodylphenol
were prepared by the dimethyldioxirane oxidation of the
corresponding 2-iodophenyltosylamides or 2-iodophenyl
tosylate and isolated as stable, microcrystalline products.
Single-crystal X-ray diffraction analysis of N-(2-iodyl-
phenyl)-N,4-dimethylbenzenesulfonamide revealed pseu-
The low solubility of IBX 1arises from strong intermolecular
secondary I O contacts, hydrogen bonding, and π-stacking
3 3 3
observed for IBX in the solid state.3 Several research groups
have tried to overcome this preparative limitation by perform-
ing oxidation at elevated temperatures,4a using an ionic liquid
and water as a reaction medium,4b or functionalizing IBX
aromatic core.4c,d Also, several solid-supported reagents in
which IBX scaffold is linked to a polymer have been repor-
ted.5 Another fruitful approach initially proposed by Protasie-
wicz6 consists of incorporation of an ortho-substituent into
docyclic structure formed by intramolecular I O inter-
3 3 3
actions between the hypervalent iodine center and the
sulfonyl oxygens in the tosyl group. This tosylamide has
an excellent solubility in organic solvents and is a poten-
tially useful hypervalent iodine oxidant.
(2) (a) Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. J. Am. Chem.
Soc. 2004, 126, 5192–5201. (b) Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L.;
Sugita, K. J. Am. Chem. Soc. 2002, 124, 2212-2220 and references cited
therein. (c) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121–145. (d) Moorthy, J.
N.; Senapati, K.; Kumar, S. J. Org. Chem. 2009, 74, 6287–6290. (e) Drouet, F.;
Fontaine, P.; Masson, G.; Zhu, J. Synthesis 2009, 1370–1374. (f) Kuhakarn, C.;
Panchan, W.; Chiampanichayakul, S.; Samakkanad, N.; Pohmakotr, M.; Reutra-
kul, V.; Jaipetch, T. Synthesis 2009, 929–934. (g) Ojha, L. R.; Kudugunti, S.;
Maddukuri, P. P.; Kommareddy, A.; Gunna, M. R.; Dokuparthi, P.; Gottam, H. B.;
Botha, K. K.; Parapati, D. R.; Vinod, T. K. Synlett 2009, 117–121.
During the past decade the chemistry of pentavalent iodine
oxidizing reagents has attracted a significant research in-
terest.1 Various types of hypervalent iodine(V) compounds
(λ5-iodanes) have been reported and some of them have
emerged as reagents of choice for synthetically useful oxidative
(3) Stevenson, P. J.; Treacy, A. B.; Nieuwenhuyzen, M. J. Chem. Soc.,
Perkin Trans. 2 1997, 589–591.
(4) (a) More,J. D.;Finney, N.S.Org. Lett. 2002,4, 3001. (b) Liu, Z.; Chen, Z.-
C.; Zheng, Q.-G. Org. Lett. 2003, 5, 3321–3323. (c) Thottumkara, A. P.; Vinod, T.
K. Tetrahedron Lett. 2002, 43, 569–572. (d) Richardson, R. D.; Zayed, J. M.;
Altermann, S.; Smith, D.; Wirth, T. Angew. Chem., Int. Ed. 2007, 46, 6529–6532.
(5) (a) Muelbaier, M.; Giannis, A. Angew. Chem., Int. Ed. 2001, 40, 4393–
4394. (b) Sorg, G.; Mengei, A.; Jung, G.; Rademann, J. Angew. Chem., Int.
Ed. 2001, 40, 4395–4397. (c) Reed, N. N.; Delgado, M.; Hereford, K.;
Clapham, B.; Janda, K. D. Bioorg. Med. Chem. Lett. 2002, 12, 2047–2049.
(d) Lei, Z.; Denecker, C.; Jegasothy, S.; Sherrington, D. C.; Slater, N. K. H.;
Sutherland, A. J. Tetrahedron Lett. 2003, 44, 1635–1637. (e) Bromberg, L.;
Zhang, H.; Hatton, T. A. Chem. Mater. 2008, 20, 2001–2008.
(1) (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic
Press: London, UK, 1997. (b) Hypervalent Iodine Chemistry; Wirth, T., Ed.;
Springer-Verlag: Berlin, Germany, 2003. (c) Koser, G. F. Adv. Heterocycl. Chem.
2004, 86, 225–292. (d) Ladziata, U.; Zhdankin, V. V. Synlett 2007, 527–537. (e)
Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656–3665. (f) Ladziata, U.;
Zhdankin, V. V. ARKIVOC 2006, 9, 26–58. (g) Zhdankin, V. V.; Stang, P. J.
Chem. Rev. 2008, 108, 5299–5358. (h) Zhdankin, V. V. ARKIVOC 2009, 1, 1–
62. (i) Richardson, R. D.; Wirth, T. Angew. Chem., Int. Ed. 2006, 45, 4402–4404.
(j) Zhdankin, V. V. Sci. Synth., 2007, 31a (Chapter 31.4.1), 161-234. (k) Tohma,
H.; Kita, Y. Adv. Synth. Catal. 2004, 346, 111–124. (l) Kita, Y.; Fujioka, H. Pure
Appl. Chem. 2007, 79, 701–713. (m) Uyanik, M.; Ishihara, K. Chem. Commun.
2009, 2086–2099. (n) Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073–2085. (o)
Ochiai, M.; Miyamoto, K. Eur. J. Org. Chem. 2008, 4229–4239.
(6) (a) Macikenas, D.; Skrzypczak-Jankun, E.; Protasiewicz, J. D. Angew.
Chem., Int. Ed. 2000, 39, 2007. (b) Meprathu, B. V.; Justik, M. W.;
Protasiewicz, J. D. Tetrahedron Lett. 2005, 46, 5187–5190.
8444 J. Org. Chem. 2009, 74, 8444–8447
Published on Web 10/01/2009
DOI: 10.1021/jo901638f
r
2009 American Chemical Society