N. Batoux et al. / Tetrahedron Letters 42 (2001) 1491–1493
1493
ppm) to the Z isomer in the case of 2%-deoxyuridine
References
dimer (7b).‡
1. Preparation of catalyst: Schwab, P.; Grubbs, R. H.;
Ziller, J. W. J. Am. Chem. Soc., 1996, 118, 100. For
recent reviews about metathesis: (a) Fu¨rstner, A.; Angew.
Chem., Int. Ed., 2000, 39, 3012; (b) Grubbs, R. H.;
Chang, S. Tetrahedron 1998, 54, 4413; (c) Armstrong, S.
K. J. Chem. Soc., Perkin Trans. 1 1998, 371; (d) Schuster,
M.; Blechert, S. In: Transition Metals for Organic Synthe-
sis; Beller, M.; Bolm, C., Ed.; 1998; p. 275; (e) Schuster,
M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36,
2036.
Trying to explain the moderate yields obtained for
metathesis dimerisation of nucleosides, compared to
those obtained for example with sugar derivatives, we
can notice that metathesis with N containing products
affords lower yields.6 This could be due to an inhibition
of the catalyst by nitrogen atoms14 that are present in
pyrimidines and especially in cytosine. However, trying
the metathesis reaction with an excess of catalyst does
not improve the yield.
2. Lynn, D. M.; Mohr, B.; Grubbs, R. H. J. Am. Chem.
Soc. 1998, 120, 1627.
The biological activities of thymidine (7a, mix of both
isomers) and uridine (7b, E isomer) dimers were evalu-
ated on CEM-SS cells infected by HIV-1 LAI virus and
on MT4 cells infected by HIV-1 IIIB according to
standardised protocols.15 These compounds do not
show any activity against these viruses and are not
cytotoxic (IC50>10−1 mg/mL).
3. (a) O’Leary, D. J.; Blackwell, H. E.; Washenfelder, R. A.;
Grubbs, R. H. Tetrahedron Lett. 1998, 39, 7427; (b)
Feng, J.; Schuster, M.; Blechert, S. Synlett 1997, 129.
4. (a) Gan, Z.; Roy, R. Tetrahedron 2000, 56, 1423; (b) Roy,
R.; Dominique, R.; Das, S. K. J. Org. Chem. 1999, 64,
5408; (c) Kirschning, A.; Chen, G.-W. Tetrahedron Lett.
1999, 40, 4665; (d) Dominique, R.; Das, S. K.; Roy, R.
Chem. Commun. 1998, 2437.
5. Hu, Y.-J.; Roy, R. Tetrahedron Lett. 1999, 40, 3305.
6. For examples of ring closing metathesis, see: (a) Fu¨rstner,
A.; Ackermann, L. Chem. Commun. 1999, 95; (b) Scholl,
M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H. Tetra-
hedron Lett. 1999, 40, 2247; (c) Blackwell, H. E.; Grubbs,
R. H. Angew. Chem. Int. Ed. 1998, 37, 3281; (d)
Leeuwenburgh, M. A.; Overkleeft, H. S.; van der Marel,
G. A.; van Boom, J. H. Synlett 1997, 1263.
In summary, this paper presents for the first time an
application of cross coupling olefin metathesis for the
synthesis of dimeric nucleoside analogues. Others ana-
logues are currently under investigation in our
laboratory.
Acknowledgements
7. (a) Magdalena, J.; Ferna´ndez, S.; Ferrero, M.; Gotor, V.
Tetrahedron Lett. 1999, 40, 1787; (b) Wendeborn, S.;
Wolf, R. M.; De Mesmaeker, A. Tetrahedron Lett. 1995,
36, 6879.
The authors are grateful to the Conseil Re´gional du
Limousin for financial support and to Pr. M. Guilloton
for his help in the preparation of this manuscript.
8. Benhaddou, R.; Czernecki, S.; Vale´ry, J. M.; Bellosta, V.
Bull. Soc. Chim. Fr. 1991, 127, 108.
9. Chu, C. K.; Doboszewski, B.; Schmidt, W.; Ullas, G. V.
J. Org. Chem. 1989, 54, 2767.
10. Grunder-Klotz, E.; Just, G. Nucleosides Nucleotides 1994,
13, 1829.
11. Starett, J. E.; Tortolani, D. R.; Baker, D. C.; Omar, M.
T.; Hebbler, A. K.; Wos, J. A.; Martin, J. C.; Mansuri,
M. M. Nucleosides Nucleotides 1990, 9, 885.
12. Nahar, P. Tetrahedron Lett. 1997, 38, 7253.
13. Breitmaier E.; Voelter, W. Carbon-13 NMR Spec-
troscopy. High Resolutions Methods and Applications in
Organic Chemistry and Biochemistry; VCH: New York,
1987; pp. 192.
14. (a) Rutjes, F. P. J. T.; Schoemaker, H. E. Tetrahedron
Lett. 1997, 38, 677; (b) Fu¨rstner, A.; Langemann, K.
Synthesis 1997, 792.
15. Moog, C.; Wick, A.; Le Ber, P.; Kirn, A.; Aubertin, A.
M. Antiviral Res. 1994, 24, 275.
‡ Structure of all products have been checked by NMR (Bruker
1
DPX-400, 400 MHz for H, 100 MHz for 13C) and mass spectrome-
try. Selected NMR values for final compound of dimeric uridine
(7b) in CD3OD: E isomer: 1H: 8.11 (d, 2H, J=8.1 Hz, H-5), 6.01
(dd, 2H, J=6.3, 3.6 Hz, H-1%), 5.65 (d, 2H, J=8.1 Hz, H-6), 5.53
(m, 2H, CHꢀCH), 3.87 (dd, 2H, J=12.2, 2.3 Hz, H-5%a), 3.74 (m,
2H, H-4%), 3.68 (dd, 2H, J=12.2, 3.6 Hz, H-5%b), 2.30ꢀ2.05 (m, 10
H, H-2%, H-2%%, H-3%, CH2-CHꢀ). 13C: 166.50 (C-4), 152.28 (C-2),
142.73 (C-5), 130.97 (CHꢀCH), 101.90 (C-6), 87.95 (C-4%), 86.83
(C-1%), 62.46 (C-5%), 39.90 (C-2%), 38.21 (C-3%), 35.85 (C6 H2-CHꢀ). Z
isomer: 1H: 8.12 (d, 2H, J=8.1 Hz, H-5), 6.04 (dd, 2H, J=6.4, 3.6
Hz; H-1%), 5.65 (d, 2H, J=8.1 Hz, H-6), 5.53 (m, 2H, CHꢀCH), 3.89
(dd, 2H, J=12.2, 2.4 Hz, H-5%a), 3.77 (m, 2H, H-4%), 3.71 (dd, 2H,
J=12.2, 3.6 Hz, H-5%b), 2.34ꢀ2.05 (m, 10 H, H-2%, H-2%%, H-3%,
CH2
(CHꢀCH), 101.92 (C-6), 88.01 (C-4%), 86.78 (C-1%), 62.46 (C-5%),
39.93 (C-2%), 38.44 (C-3%), 30.33 (CH2-CHꢀ).
6
-CHꢀ). 13C: 166.52 (C-4), 152.28 (C-2), 142.72 (C-5), 129.75
6
.