Entropic Paradoxy Associated with Ligand Preorganization
A R T I C L E S
Obtaining a more favorable enthalpy of binding typically
entails increasing the noncovalent associations that arise from
polar, van der Waals, and charge-dipole interactions.4 This
objective is not easily achieved, however, because desolvation
of polar groups on a ligand is energetically more costly than
desolvating nonpolar groups.5 Further complicating the task is
the difficulty associated with controlling the geometries of
individual polar interactions between the ligand and the protein,
the energies of which are both distance and angle dependent.
A more favorable binding entropy may be achieved by
reducing unfavorable solvation and conformational parameters
associated with the ligand.6,7 One common tactic to enhance
the entropy of solvation involves increasing the hydrophobicity
of the ligand, and although this often leads to an improved
binding affinity, formation of the resultant complex is not
necessarily accompanied by the expected entropy-driven sig-
nature characteristic of the hydrophobic effect.8 For example,
adding methylene groups to increase the hydrophobicity of a
ligand can lead to a less favorable binding entropy and a more
favorable binding enthalpy.9 Indeed, a search of the literature
reveals numerous examples wherein binding of two nonpolar
molecules is characterized by a large enthalpic driving force
rather than an entropic one.10,11
Figure 1. Simple model of the putative energetic effects associated with
ligand preorganization. Cyclization of a flexible ligand limits the degrees
of freedom and reduces the number of conformational isomers in solution,
so the probability that the ligand adopts its biologically active conformation
in solution is enhanced, thereby resulting in a more favorable entropy of
binding. This analysis presumes that the two ligands interact similarly with
the solvent and protein so that the binding enthalpies for the two are
approximately the same.
Constraining a flexible ligand in the three-dimensional shape
it adopts when bound to a receptor, namely its biologically active
conformation, can also result in increased association con-
stants.12-14 This enhanced affinity has been commonly attributed
to the more favorable configurational entropy of binding that is
expected from reducing the dynamic motion of a ligand prior
to its complexation with the protein (i.e., ∆S° < ∆S°′) (Figure
1). An implicit assumption in this reasoning is that solvent and
protein interact in the same way with both the flexible and
constrained ligands so that no significant change in binding
enthalpy is expected (i.e., ∆H° ≈ ∆H°′). However, increases
in potencies accompanying ligand preorganization are often less
than 10-fold, an amount somewhat less than what would be
expected based upon the accepted energetic estimates of 0.7-1.6
kcal mol-1 (i.e., ∼2.3-5.3 eu at 25 °C) for completely restricting
an independent rotor.15 Indeed, the small energetic benefits
observed for constraining rotors in the arena of host-guest
chemistry led Schneider to question whether reducing the
(4) For examples of parametrizing binding enthalpy, see: Luque, I.; Freire,
E. Proteins: Struct., Funct., Genet. 2002, 49, 181–190.
(5) Cabani, S.; Gianni, P.; Mollica, V.; Lepori, L. J. Solution Chem. 1981,
8, 563–595.
(6) (a) Ruben, A. J.; Kiso, Y.; Freire, E. Chem. Biol. Drug Des. 2006,
67, 2–4. (b) Lafont, V.; Armstrong, A. A.; Ohtaka, H.; Kiso, Y.;
Amzel, L. M.; Freire, E. Chem. Biol. Drug Des. 2007, 69, 413–422.
(7) For detailed analyses of intermolecular interactions, see: (a) Gohlke,
H.; Klebe, G. Angew. Chem., Int. Ed. 2002, 41, 2644–2676. (b) Hunter,
C. A. Angew. Chem., Int. Ed. 2004, 43, 5310–5324. (c) Williams,
D. H.; Stephens, E.; O’Brien, D. P.; Zhou, M. Angew. Chem., Int. Ed.
2004, 43, 6596–6616.
(8) For some leading articles on hydrophobic effects associated with
nonpolar and polar groups, see: (a) Bartlett, P. A.; Yusuff, N.; Rico,
A. C.; Lindvall, M. K. J. Am. Chem. Soc. 2002, 124, 3853–3857. (b)
Southall, N. T.; Dill, K. A.; Haymet, A. D. J. J. Phys. Chem. B 2002,
106, 521–533. (c) Kyte, J. Biophys. Chem. 2003, 100, 193–203. (d)
Chalikian, T. V. Biopolymers 2003, 70, 492–496.
(13) For some comparisons wherein the flexible and constrained ligands
have the same number of heavy atoms, see: (a) Widlanski, T.; Bender,
S. L.; Knowles, J. R. J. Am. Chem. Soc. 1989, 111, 2299–2300. (b)
Morgan, B. P.; Holland, D. R.; Matthews, B. W.; Bartlett, P. A. J. Am.
Chem. Soc. 1994, 116, 3251–3260. (c) Ettmayer, P.; France, D.;
Gounarides, J.; Jarosinski, M.; Martin, M. S.; Rondeau, J. M.; Sabio,
M.; Topiol, S.; Weidmann, B.; Zurini, M.; Bair, K. W. J. Med. Chem.
1999, 42, 971–980. (d) Hansen, K. K.; Grosch, B.; Greiveldinger-
Poenaru, S.; Bartlett, P. A. J. Org. Chem. 2003, 68, 8465–8470. (f)
Tsantrizos, Y. S.; Bolger, G.; Bonneau, P.; Cameron, D. R.; Goudreau,
N.; Kukolj, G.; LaPlante, S. R.; Llinas-Brunet, M.; Nar, H.; Lamarre,
D. Angew. Chem., Int. Ed. 2003, 42, 1355–1360.
(9) Malham, R.; Johnstone, S.; Bingham, R. J.; Barratt, E.; Phillips,
S. E. V.; Laughton, C. A.; Homans, S. W. J. Am. Chem. Soc. 2005,
127, 17061–17067.
(10) For a review of so-called nonclassical hydrophobic effects, see: Meyer,
E. A.; Castellano, R. K.; Diederich, F. Angew. Chem., Int. Ed. 2003,
42, 1210–1250.
(11) For some leading references to enthalpy driven hydrophobic associa-
tions, see: (a) Chervenak, M. C.; Toone, E. J. J. Am. Chem. Soc. 1994,
116, 10533–10539. (b) Carey, C.; Cheng, Y.-K.; Rossky, P. J. Chem.
Phys. 2000, 258, 415–425. (c) Bingham, R. J.; Findlay, J. H. B. C.;
Hsieh, S.-Y.; Kalverda, A. P.; Kjellberg, A.; Perazzolo, C.; Phillips,
S. E. V.; Seshadri, K.; Trinh, C. H.; Turnbull, W. B.; Bodenhausen,
G.; Homans, S. W. J. Am. Chem. Soc. 2004, 126, 1675–1681. (d)
Homans, S. W. Drug DiscoVery Today 2007, 12, 534–539.
(12) For reviews, see:(a) Kessler, H. Angew. Chem., Int. Ed. Engl. 1982,
21, 512–523. (b) Cram, D. J. Angew. Chem., Int. Ed. Engl. 1986, 25,
1039–1057. (c) Bo¨hm, H.-J.; Klebe, G. Angew. Chem., Int. Ed. 1996,
35, 2588–2614. (d) Hanessian, S.; McNaughton-Smith, G.; Lombart,
H.-G.; Lubell, W. D. Tetrahedron 1997, 53, 12789–l2854. (e) Mann,
A. In The Practice of Medicinal Chemistry, 2nd ed.; Wermuth, C. G.,
Ed.; Academic Press: London, U.K., 2003; pp 233-250. (f) Nakanishi,
H.; Kahn, M. Design of Peptidomimetics. In The Practice of Medicinal
Chemistry, 2nd ed.; Wermuth, C. G., Ed.; Academic Press: London,
U.K., 2003; pp 477-500. (g) Loughlin, W. A.; Tyndall, J. D. A.;
Glenn, M. P.; Fairlie, D. P. Chem. ReV. 2004, 104, 6085–6118.
(14) For some comparisons wherein the flexible and constrained ligands
differ by one or two heavy atoms, see: (a) Meyer, J. H.; Bartlett, P. A.
J. Am. Chem. Soc. 1998, 120, 4600–4609. (b) Smith, W. W.; Bartlett,
P. A. J. Am. Chem. Soc. 1998, 120, 4622–4628. (c) Marquis, R. W.;
et al. J. Med. Chem. 2001, 44, 1380–1395. (d) Dekker, F. J.; de Mol,
N. J.; Fischer, M. J. E.; Kemmink, J.; Liskamp, R. M. J. Org. Biomol.
Chem. 2003, 1, 3297–3303. (e) Nam, N.-H.; Ye, G.; Sun, G.; Parang,
K. J. Med. Chem. 2004, 47, 3131–3141. (f) Ghosh, A. K.; Swanson,
L. M.; Cho, H.; Leshchenko, S.; Hussain, K. A.; Kay, S.; Walters,
D. E.; Koh, Y.; Mitsuya, H. J. Med. Chem. 2005, 48, 3576–3585.
(15) For leading references to energetic contributions to binding of freezing
rotors, see: (a) Gerhard, U.; Searle, M. S.; Williams, D. H. Bioorg.
Med. Chem. Lett. 1993, 3, 803–808. (b) Khan, A. R.; Parrish, J. C.;
Fraser, M. E.; Smith, W. W.; Bartlett, P. A.; James, M. N. G.
Biochemistry 1998, 37, 16839–16845. (c) Hossain, M. A.; Schneider,
H.-J. Chem.sEur. J. 1999, 5, 1284–1290. (d) See also in: Schneider,
H.-J. In Protein-Ligand Interactions: From Molecular Recognition to
Drug Design; Bo¨hm, H.-J., Schneider, G., Eds.; Wiley-VCH: Wein-
heim, 2003; pp 21-50.
9
J. AM. CHEM. SOC. VOL. 131, NO. 46, 2009 16759