Maiti et al.
JOCArticle
FIGURE 1. Biologically active chiral benzimidazoles.
treatment of viral, bacterial, and fungal infections.5 Current
studies in medicinal chemistry have demonstrated them as
potential drug candidates for the pharmaceutical industry.6
They have also widespread applications in fluorescence,7
chemosensing,8 crystal engineering,9 and corrosion science.10
Recent interest in chiral benzimidazoles can also be attributed
to their asymmetric catalysis11 and diverse biological acti-
vities.12 It may be cited in this context that the chiral
benzimidazoles like cholecystokinin-2 (CCK2) receptor
antagonist Gastrazole (JB95008)12a is used as a lead drug
for treatment of pancreatic cancer, the proton-pump
inhibitor Nexium12c (esomeprazole) is developed for
acid-related diseases, and 2-[(R)-2-methylpyrrolidin-2-yl]-
1H-benzimidazole-4-carboxamide (ABT-888)12g is currently
undergoing clinical trials on humans for treatment of a variety
of cancers (Figure 1). Looking into the novel pharmacologi-
cal activities of the Nexium and ABT-888 possessing chiral
substituents at C-2 positions of the benzimidazole scaffolds,
we have envisioned that 2-substituted benzimidazoles bear-
ing biocompatible chiral sugar moieties, conjugated olefinic
double bonds, and electron withdrawing and donating func-
tional groups should be potential candidates for new drug
design and other applications. In a continuous effort to
synthesize glycal-based new chiral heterocycles4a-c we are
also looking for a chemoselective catalytic system under mild
and acid free reaction conditions toward the new chiral
benzimidazoles as there are some weaknesses in the current
methods.
There are numerous accounts in the literature on the
synthesis of benzimidazoles such as Philips method,13 solid
phase,14 enzymatic,15 and green approaches16 involving cyclo-
condensation of ortho-aromatic diamines (OAD) with
carboxylic acids, acid chlorides, or esters under harsher reac-
tion conditions. Some of the syntheses are usually conducted
(4) (a) Ghosh, R.; Chakraborty, A.; Maiti, D. K.; Puranik, V. G.
Tetrahedron Lett. 2005, 46, 8047–8050. (b) Ghosh, R.; Chakraborty, A.;
Maiti, D. K.; Puranik, V. G. Org. Lett. 2006, 8, 1061–1064. (c) Chatterjee, N.;
Pandit, P.; Halder, S.; Patra, A.; Maiti, D. K. J. Org. Chem. 2008, 73, 7775–
7778. (d) Pandit, P.; Chatterjee, N.; Halder, S.; Hota, S. K.; Patra, A.; Maiti,
D. K. J. Org. Chem. 2009, 74, 2581–2583.
(12) (a) Ormerod, D.; Willemsens, B.; Mermans, R.; Langens, J.; Winderickx,
G.; Kalindjian, S. B.; Buck, I. M.; McDonald, I. M. Org. Process Res. Dev. 2005,
9, 499–507. (b) Wittman, M.; Carboni, J.; Attar, R.; Balasubramanian, B.;
Balimane, P.; Brassil, P.; Beaulieu, F.; Chang, C.; Clarke, W.; Dell, J.;
Eummer, J.; Frennesson, D.; Gottardis, M.; Greer, A.; Hansel, S.; Hurlburt,
W.; Jacobson, B.; Krishnananthan, S.; Lee, F. Y.; Li, A.; Lin, T.-A.; Liu, P.;
Ouellet, C.; Sang, X.; Saulnier, M. G.; Stoffan, K.; Sun, Y.; Velaparthi, U.;
Wong, H.; Yang, Z.; Zimmermann, K.; Zoeckler, M.; Vyas, D. J. Med.
Chem. 2005, 48, 5639–5643. (c) Raju, S. V. N.; Purandhar, K.; Reddy, P. P.;
Reddy, G. M.; Reddy, L. A.; Reddy, K. S.; Sreenath, K.; Mukkanti, K.;
Reddy, G. S. Org. Process Res. Dev. 2006, 10, 33–35. (d) Klapars, A.;
Campos, K. R.; Waldman, J. H.; Zewge, D.; Dormer, P. G.; Chen, C.
J. Org. Chem. 2008, 73, 4986–4993. (e) Crawford, J. B.; Chen, G.; Gauthier,
D.; Wilson, T.; Carpenter, B.; Baird, I. R.; McEachern, E.; Kaller, A.;
Harwig, C.; Atsma, B.; Skerlj, R. T.; Bridger, G. J. Org. Process Res. Dev.
2008, 12, 823–830. (f) Balboni, G.; Fiorini, S.; Baldisserotto, A.; Trapella, C.;
Sasaki, Y.; Ambo, A.; Marczak, E. D.; Lazarus, L. H.; Salvadori, S. J. Med.
Chem. 2008, 51, 5109–5117. (g) Penning,T. D.; Zhu, G.-D.; Gandhi, V. B.; Gong,
J.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E. F.; Donawho, C. K.; Frost, D. J.;
Bontcheva-Diaz, V.; Bouska, J. J.; Osterling, D. J.; Olson, A. M.; Marsh, K. C.;
Luo, Y.; Giranda, V. L. J. Med. Chem. 2009, 52, 514-523, and references cited
therein.
(13) (a) Philips, M. A. J. Chem. Soc. 1928, 2393. (b) Hein, D. W.; Alheim,
R. J.; Leavitt, J. J. J. Am. Chem. Soc. 1957, 79, 427–429. (c) Huang, W.;
Scarborough, R. M. Tetrahedron Lett. 1999, 40, 2665–2668. (d) Blatch, A. J.;
Chetina, O. V.; Howard, J. A. K.; Patrick, L. G. F.; Smethurst, C. A.; Whiting, A.
Org. Biol. Chem. 2006, 4, 3297-3302 and references cited therein.
(14) (a) Wu, Z.; Rea, P.; Wickam, G. Tetrahedron Lett. 2000, 41, 9871–
9874. (b) Tumelty, D.; Cao, K.; Holmes, C. P. Org. Lett. 2001, 3, 83–86.
(15) Renard, G.; Lerner, D. A. New J. Chem. 2007, 31, 1417–1420.
(16) (a) Dudd, L. M.; Venardou, E. V.; Garcia-Verdugo, E.; Licence, P.;
Blake, A. J.; Wilson, C.; Poliakoff, M. Green Chem. 2003, 5, 187–192.
(b) Gogoi, P.; Konwar, D. Tetrahedron Lett. 2006, 47, 79–82. (c) Maradolla,
M. B.; Allam, S. K.; Mandha, A.; Chandramouli, G. V. P. Arkivoc 2008, 42-46
and references cited therein.
(5) (a) Pratt, W. B. Chemotherapy of Infection; Oxford University Press: New
York, 1997. (b) Bostoc-Smith, C. E.; Searle, M. S. Nucleic Acid Res. 1999, 27,
1619–1624. (c) Spasov, A. A.; Yozhitsa, I. N.; Bugaeva, L. I.; Anisimova, V. A.
Pharm. Chem. J. 1999, 33, 232–243.
(6) (a) Arienti, K. L.; Brunmark, A.; Axe, F. U.; McClure, K.; Lee, A.;
Blevitt, J.; Neff, D. K.; Huang, L.; Crawford, S.; Pandit, C. R.; Karlsson, L.;
Breitenbucher, J. G. J. Med. Chem. 2005, 48, 1873–1885. (b) Shrader, W. D.;
Kolesnikov, A.; Burgess-Henry, J.; Rai, R.; Hendrix, J.; Hu, H.; Torkelson,
S.; Ton, T.; Young, W. B.; Katz, B. A.; Yu, C.; Tang, J.; Cabuslay, R.;
Sanford, E.; Janc, J. W.; Sprengeler, P. A. Bioorg. Med. Chem. Lett. 2006, 16,
1596–1600. (c) Sann, C. L.; Baron, A.; Mann, J.; van den Berg, H.;
Gunaratnam, M.; Neidle, S. Org. Biomol. Chem. 2006, 4, 1305–1312.
(7) (a) Tway, P. C.; Love, L. J. C. J. Phys. Chem. 1982, 86, 5223–5226.
(b) Choudhury, P.; Panja, S.; Chatterjee, A.; Bhattacharya, P.; Chakravorti,
S. J. Photochem. Photobiol. A 2005, 173, 106–113. (c) Wu, Y.; Lawson, P. V.;
Henary, M. M.; Schmidt, K.; Bredas, J.-L.; Fahrni, C. J. J. Phys. Chem. A
2007, 111, 4584–4595. (d) Chaudhuri, P.; Ganguly, B.; Bhattacharya, S.
J. Org. Chem. 2007, 72, 1912–1923. (e) Sannigrahi, A.; Arunbabu, D.;
Sankar, R. M.; Jana, T. Macromolecules 2007, 40, 2844–2851.
(8) (a) Wong, W. W. H.; Vickers, M. S.; Cowley, A. R.; Paul, R. L.; Beer,
P. D. Org. Biomol. Chem. 2005, 3, 4201–4208. (b) Singh, N.; Jang, D. O. Org.
Lett. 2007, 9, 1991–1994.
(9) (a) Matthews, C. J.; Broughton, V.; Bernardinelli, G.; Melich, X.;
Brand, G.; Willis, A. C.; Williams, A. F. New J. Chem. 2003, 27, 354–358.
(b) Li, L.; Hu, T.-L.; Li, J.-R.; Wang, D.-Z.; Zeng, Y.-F.; Bu, X.-H.
CrystEngComm 2007, 9, 412–420.
(10) (a) Khaled, K. F. Electrochim. Acta 2003, 48, 2493–2503. (b) Roque,
´
J. M.; Pandiyan, T.; Cruz, J.; Garcıa-Ochoa, E. Corros. Sci. 2008, 50, 614–
624.
(11) (a) Maiti, D. K.; Bhattacharya, P. K. Synth. Commun. 1998, 28, 99–
108. (b) Figge, A.; Altenbach, H. J.; Brauer, D. J.; Tielmann, P. Tetrahedron:
Asymmetry 2002, 13, 137–144. (c) Fekner, T.; Gallucci, J.; Chan, M. K.
J. Am. Chem. Soc. 2004, 126, 223–236. (d) Karnik, A. V.; Kamath, S. S.
J. Org. Chem. 2007, 72, 7435–7438.
J. Org. Chem. Vol. 74, No. 21, 2009 8087