C. R. Reddy, E. Jithender / Tetrahedron Letters 50 (2009) 5633–5635
5635
Ph
N
Ts
Acknowledgements
OH
N
B(C6F5)3 (5 mol%)
Ph
N
Ts
+
N
H
We would like to thank DST, New Delhi for financial assistance
(GAP-0154) and are grateful to Dr. S. Chandrasekhar for his encour-
agement and useful discussions.
CH2Cl2, rt, 19 h
90%
1a
3d
R-2d
Scheme 2. N-alkylation with enantiopure alcohol R-2d.
References and notes
Ts
Ph
N
Ts
1. Reddy, Ch. R.; Madhavi, P. P.; Reddy, A. S. Tetrahedron Lett. 2007, 48, 7169–7172.
2. Reddy, Ch. R.; Srikanth, B.; Rao, N. N.; Shin, D.-S. Tetrahedron 2008, 64, 11666–
11672.
3. (a) Benstead, D. J.; Hulme, A. N.; McNab, H.; Wight, P. Synlett 2005, 1571–1574;
(b) He, R.; Lam, Y. Org. Biomol. Chem. 2008, 6, 2182–2186.
N
AgSbF6
N
Ph
N
Ph
Ph
CH2Cl2, rt
1 h, 85%
Ph
Ph
3b
4
4. Cahhi, S.; La Torre, F.; Mistiti, D. Synthesis 1977, 301–303.
5. (a) Henry, J. R.; Marcin, L. R.; McIntosh, M. C.; Scok, P. M.; Harris, G. D., Jr.;
Weinreb, S. M. Tetrahedron Lett. 1989, 30, 5709–5712; (b) Keith, J. M.; Gomez, L.
J. Org. Chem. 2006, 71, 7113–7116.
Scheme 3. Synthesis of pyrazole 4 from 3b.
6. (a) Kobayashi, S.; Hirabayashi, R. J. Am. Chem. Soc. 1999, 121, 6942–6943; (b)
Movassaghi, M.; Ahmed, O. K. Angew. Chem., Int. Ed. 2008, 47, 8909–8912; c
Buchwald, S. L.; Willoughby, C. A. Catalytic asymmetric and non-asymmetric
reduction of imines and oximines using metal catalysts. U.S. Cont.-in-part of U.S.
Ser. No. 698940, abandoned, US 5292893, 1994.; (d) Schantl, J. G.; Hebeisen, P.;
Karpellus, P. Synth. Commun. 1989, 19, 39–48; (e) Lee, Y. T.; Chung, Y. K. J. Org.
Chem. 2008, 73, 4698–4701; (f) Mundal, D. A.; Lutz, K. E.; Thomson, R. J. Org. Lett.
2009, 11, 465–468.
alcohols 2b to 2d in the presence of B(C6F5)3 in dichloromethane gave
the corresponding N-alkylated products 3b to 3d, respectively, in
good yields (Table 2, entries 2–4). However, the reaction of 1a with
3-phenyl-1-propanol (2e) did not proceed under the present reaction
conditions (Table 2, entry 5). This may be due to thenon-benzylicnat-
ure of the alcohol. However, the reaction of N0-(4-methoxybenzyli-
dene)-4-methylbenzenesulfonohydrazide (1b) and 4-methyl-N0-(-
2-nitrobenzylidene) benzenesulfonohydrazide (1c) with benzylic
alcohols 2a to 2d proceeded smoothly to give the corresponding N-
alkylated products 3f to 3m in good yields (Table 2, entries 6–13).
To check the configuration of enantiopure secondary benzylic
alcohols during the N-alkylation, the reaction of 1a with enantio-
pure 2d (R-2d) was carried out under the present reaction condi-
tions, which gave the corresponding N-alkylated product 3d with
loss of configuration.8 This may be due to the initial formation of
carbocation from benzylic alcohol followed by the reaction with
hydrazone (Scheme 2).
Furthermore, we have demonstrated the utility of the N-alkylated
hydrazone products in the synthesis of pyrazole products. The reac-
tion of N-alkylated tosylhydrazone 3b with silver hexafluoroantimo-
nate in dichloromethane at room temperature gave the 3,5-diphenyl-
1-(phenyl(tosyl) methyl)-1H-pyrazole 4 in 85% yield (Scheme 3).6e
In conclusion, we have developed an acid-catalyzed N-benzyla-
tion of tosylhydrazones using benzylic alcohols as alkylating
agents for the first time. The reaction conditions were mild and
efficient and provided the products in excellent yields. The applica-
bility of N-alkylated hydrazones has also been successfully demon-
strated for the synthesis of pyrazole.
7. (a) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492–4493; (b) Myers, A.
G.; Movassaghi, M.; Zheng, B. J. Am. Chem. Soc. 1997, 119, 8572–8573; (c)
Movassaghi, M.; Ahmad, O. K. J. Org. Chem. 2007, 72, 1838–1841.
8. The enantioselectivity was checked using chiral HPLC: chiral pak IA 250 ꢁ 4.6 mm,
5
l, mobile phase: 5% iso-propanol in hexanes, flow rate: 1 mL/min., retention
time: 15.50 (47.4%), 23.15 (52.5%).
9. Spectral data of representative new products (3a): White solid; mp 149–153 °C;
1H NMR (300 MHz, CDCl3): d 8.16 (s, 1H), 7.48–7.38 (m, 3H), 7.29–7.19 (m, 14H),
7.07 (d, 2H, J = 8.1 Hz), 6.85 (s, 1H), 2.30 (s, 3H); 13C NMR (75 MHz, CDCl3): d
151.7, 143.7, 138.2, 135.4, 134.4, 130.2, 128.5, 128.5, 128.5, 128.5, 128.5, 128.5,
128.5, 128.1, 128.1, 128.1, 128.1, 128.1, 128.1, 128.1, 127.4, 127.4, 127.4, 127.4,
127.4, 67.0, 21.5; IR (KBr):
m ;
3747, 3436, 3025, 1599, 1344, 1132, 697 cmꢂ1
HRMS-ESI calcd for C27H24N2O2SNa: 463.1456; found: 463.1435.
Compound (3b): Brown solid; mp 125–129 °C; 1H NMR (300 MHz, CDCl3): d 7.98
(d, 2H, J = 8.3 Hz), 7.82 (s, 1H), 7.75 (d, 2H, J = 8.1 Hz), 7.56–7.53 (m, 2H), 7.45 (t,
2H, J = 7.5 Hz), 7.38–7.23 (m, 9H), 7.12 (d, 2H, J = 8.1 Hz), 6.92 (s, 1H), 2.33 (s,
3H); 13C NMR (75 MHz, CDCl3): d 149.2, 144.3, 136.1, 134.8, 134.3, 131.7, 130.2,
129.9, 129.9, 129.5, 129.5, 129.1, 129.15, 128.9, 128.9, 128.8, 128.8, 128.7, 128.4,
128.3, 128.3, 127.6, 126.9, 126.9, 122.1, 89.4, 81.8, 54.5, 21.6; IR (KBr):
m
3423,
3024, 2917, 1967, 1598, 1359 cmꢂ1
487.1456; found: 487.1450.
; HRMS-ESI calcd for C29H24N2O2SNa:
Compound (3c): Light brown solid; mp 121–125 °C; 1H NMR (300 MHz, CDCl3): d
7.89 (d, 2H, J = 9.0 Hz), 7.52 (s, 1H), 7.38–7.23 (m, 8H), 7.11–7.03 (m, 3H), 5.86
(dd, 1H, J = 6.7, 4.5 Hz), 2.76 (m, 2H), 2.44 (s, 3H), 2.01 (m, 2H), 1.77 (m, 2H);
13CNMR (75 MHz, CDCl3): d 148.1, 144.0, 137.1, 136.4, 134.4, 134.3, 129.9, 129.7,
129.3, 129.3, 128.5, 128.5, 128.3, 128.3, 127.5, 127.2, 127.2, 127.2,126.8, 58.4,
29.4, 24.7, 22.4, 21.7; IR (KBr):
m 3434, 3063, 2947, 1911, 1601, 1397, 1162, 996,
695 cmꢂ1; HRMS-ESI calcd for C24H24N2O2SNa: 427.1456; found: 427.1435.
Compound (3d): Off-white solid; mp:130–133.5 °C; 1H NMR (300 MHz, CDCl3): d
7.84 (d, 2H, J = 8.3 Hz), 7.65 (s, 1H), 7.53–7.48 (m, 1H), 7.34–7.20 (m, 8H), 6.83
(d, 2H, J = 8.3 Hz), 4.73 (s, 2H), 3.78 (s, 3H), 2.44 (s, 3H) 13C NMR (75 MHz,
CDCl3): d 159.3, 147.4, 144.2, 134.8, 134.2, 130.3, 129.7, 129.7, 128.7, 128.7,
128.5, 128.5, 128.5, 127.6, 127.6, 127.5, 127.5, 114.5, 114.5, 55.4, 51.9, 21.7; IR
General experimental procedure for B(C6F5)3-catalyzed N-alkyl-
ation of aldehyde tosylhydrazones using benzylic alcohols: To a stirred
solution of benzylic alcohol 2 (1 mmol) in dichloromethane (5 mL)
were added tosyl hydrazone 1 (1 mmol) and 5 mol % B(C6F5)3. The
reaction mixture was stirred at room temperature and the reaction
progress was monitored by TLC analysis. After the completion of
the reaction (for reaction time, see Table 2), the mixture was evap-
orated in vacuo. The residue was purified by column chromatogra-
phy on silica gel using ethyl acetate and hexanes as eluent to give
the corresponding N-alkylated products.9
(KBr):
m 3737, 3023, 2917, 1606, 1407, 1171, 904, 661; HRMS-ESI calcd for
C22H22N2O3SNa: 417.1248; found: 417.1229.
Compound (4): Off-white solid; mp 172–175 °C; 1H NMR (300 MHz, CDCl3): d
7.82–7.74 (t, 4H, J = 6.9 Hz), 7.49–7.23 (m, 13H), 7.12 (d, 2H, J = 8.1 Hz), 6.61 (s,
1H), 6.25 (s, 1H), 2.44 (s, 3H); 13C NMR (75 MHz, CDCl3): d 152.1, 147.8, 144.9,
133.1, 130.7, 130.7, 130.2, 129.8, 129.8, 129.2, 129.2, 129.2, 129.2, 128.9, 128.9,
128.7, 128.7, 128.7, 128.5, 128.5, 128.4, 128.4, 128.1, 126.9, 125.7, 125.7, 103.8,
80.8, 21.6; IR (KBr):
HRMS-ESI calcd for C29H24N2O2SNa: 487.1456; found: 487.1469.
m ;
3060, 2937, 1897, 1591, 1449, 1077, 814, 697 cmꢂ1