3468
A.I. Poddel’sky et al. / Journal of Organometallic Chemistry 694 (2009) 3462–3469
3.3.3. Amino-bis-(3,5-di-tert-butyl-phenolate-2-
yl)triethylantimony(V) (4)
34.63, 34.93, 107.98, 113.68, 132.03, 133.66, 139.30, 145.71.
13C{1H} NMR (50 MHz, CDCl3, 20 °C, d, ppm): 8.13 (2 CH2CH3),
23.38 (2 CH2CH3), 29.56 (2 C(CH3)3), 31.86 (2 C(CH3)3), 107.98 (s,
Ar), 113.68 (s, Ar). Anal. Calc. (%) for C32H50NO2Sb (602.463): C,
63.79; H, 8.36; N, 2.32; Sb, 20.21. Found: C, 64.06; H, 8.12; N,
2.23; Sb, 20.51%.
Method 1: The solution of amino-bis-phenol (AP-AP)H3 (0.212 g,
0.5 mmol, toluene 30 ml) was added dropwise to a solution of
Et3SbBr2 (0.185 g, 0.5 mmol) and Et3N (0.14 ml, 1 mmol) in toluene
(20 ml) at ꢁ0 °C. After the addition was complete, reaction mixture
was filtered to remove colorless precipitate of [Et3NH]Br. The
change of the solvent with hexane and storing this solution at
ꢀ18 °C for 1 day allowed colorless microcrystalline solid product.
Yield is 0.197 g (62.4%). This complex should be stored in vacuo un-
3.3.5. Reaction of 1 and 2 with molecular oxygen
The solution of 1 or 2 in CDCl3 (0.015 M) was exposed to air in
NMR tube and a steam of fresh air was passed through solution. 1H
NMR spectra were recorded each hour during 8 h. Then tube was
degassed by the five time repeating cycle ‘‘freeze-pump-warm”
to remove air and then 1H NMR spectra were recorded again to
show the formation of initial complexes 1 or 2, correspondingly.
[(L-iPr)O2]SbEt3 (6): 1H NMR (200 MHz, CDCl3, 20 °C, TMS, d,
der low temperature. IR (Nujol, KBr, m
, cmꢀ1): 3158 s, 1603 w, 1563
w, 1482 s, 1454 s, 1445 s, 1415 m, 1377 m, 1360 m, 1302 s, 1284 s,
1269 w, 1240 m, 1202 s, 1164 w, 1129 m, 1034 w, 1020 m, 980 m,
936 w, 914 m, 878 m, 857 w, 834 s, 810 w, 785 m, 751 s, 707 s, 667
w, 645 w, 584 w, 541 w, 519 s, 510 w, 487 m, 475 m, 439 w, 405 w.
1H NMR (200 MHz, CDCl3, 20 °C, TMS, d, ppm): 1.16 (t,
3JHH = 7.9 Hz, 6H, 2 CH2CH3), 1.26 and 1.35 (s, both 18 H, t-Bu),
3
ppm): 0.99 (s, 9H, t-Bu); 1.36 (s, 9H, t-Bu); 1.28 (t, JHH = 7.9 Hz,
3
9H, 3 CH2CH3); 2.47 (q, JHH = 7.9 Hz, 6H, 3 CH2CH3); 2.83 (sept.,
3
3
3
1.42 (q, JHH = 7.9 Hz, 4H, 2 CH2CH3), 1.61 (t, JHH = 7.8 Hz, 3H,
3JHH = 6.8 Hz, 1H, CH(CH3)2); 3.45 (sept., JHH = 6.8 Hz, 1H,
3
4
4
CH2CH3), 1.90 (q, JHH = 7.8 Hz, 2H, CH2CH3), 4.96 (br.s, 1H, NH),
CH(CH3)2); 6.36 (d, JHH = 1.7 Hz, 1H, C6H2); 6.42 (d, JHH = 1.7 Hz,
1H, C6H2); 6.97–7.30 (m, 3H, C6H3). Methyl groups of iPr were dif-
ficult to determine.
4
7.08 and 7.21 (both d, JHH = 2.4 Hz, both 2H, 2 C6H2). 1H NMR
3
(400 MHz, benzene-d, 20 °C, TMS, d, ppm): 1.06 (t, JHH = 7.9 Hz,
3
6H, 2 CH2CH3); 1.21 (q, 4H, JHH = 7.9 Hz, 2 CH2CH3); 1.32 (s, 18H,
[(L-Me)O2]SbEt3 (7): 1H NMR (200 MHz, CDCl3, 20 °C, TMS, d,
ppm): 1.01 (s, 9H, t-Bu); 1.29 (t, JHH = 7.9 Hz, 9H, 3 CH2CH3);
1.35 (s, 9H, t-Bu); 2.46 (q, JHH = 7.9 Hz, 6H, 3 CH2CH3); 2.08 and
2.21 (both s, both 3H, 2 CH3); 5.37 (d, JHH = 1.6 Hz, 1H, C6H2);
3
2 t-Bu); 1.56 (s, 18H, 2 t-Bu); 1.69 (t, J = 7.9 Hz, 3H, CH2CH3);
3
3
1.89 (q, 2H, JHH = 7.9 Hz, CH2CH3), 4.38 (s, 1H, NH); 7.09 (d,
4
4
4JHH = 2.0 Hz, 2H, C6H2); 7.32 (d, JHH = 2.0 Hz, 2H, C6H2). 13C NMR
4
(101 MHz, benzene-d, 20 °C, d, ppm): 9.03, 9.18, 9.72, 10.18,
16.69, 22.86, 29.41, 29.94, 31.69, 34.11, 35.33, 118.60, 122.87,
129.78, 137.53, 137.64, 151.86. 13C{1H} NMR (50 MHz, CDCl3,
20 °C, d, ppm): 8.16 (3 CH2CH3), 23.41 (3 CH2CH3), 29.56 and
31.87 (both 2C(CH3)3), 107.99 (Ar), 13.70 (Ar). Anal. Calc. (%) for
C34H56NO2Sb (632.57): C, 64.56; H, 8.92; N, 2.21; Sb, 19.25. Found:
C, 63.91; H, 8.79; N, 2.07; Sb, 18.98%.
Method 2: The solution of 4,6-di-tert-butyl-N-(3,5-di-tert-butyl-
2-hydroxyphenyl)-o-iminobenzoquinone (IBQ-AP)H (254 mg,
0.6 mmol, toluene 30 ml) was slowly added to a toluene solution
of SbEt3 (125 g, 0.6 mmol, toluene 20 ml) at low temperature
(ꢁ0 °C) with the extensive stirring. After the complete disappear-
ance of violet color of the solution, the solvent was removed off
by evaporation, and the pale yellow residue was dissolved in hex-
ane. This solution was allowed to stay at ꢀ18 °C for a night after
that the pale yellow crystalline powder was collected by filtration.
Yield is 0.25 g (65.9%).
6.35 (d, JHH = 1.6 Hz, 1H, C6H2); 6.9–7.1 (m, 3H, C6H3).
Acknowledgements
We are grateful to the Russian Foundation for Basic Research
(Grants 07-03-00819 and 07-03-00711), Russian President Grant
(Grants NSh-4182.2008.3 and MK-1286.2009.3), Russian Science
Support Foundation (A.I. Poddel’sky) for financial support of this
work.
Appendix A. Supplementary data
CCDC 716050 and 716049 contains the supplementary crystal-
lographic data for complexes 1 and 5. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
Supplementary data associated with this article can be found, in
3.3.4. Amido-bis-(3,5-di-tert-butyl-phenolate-2-
yl)diethylantimony(V) (5)
References
Method 1: The exposure of the solution of 4 to air for a 1 h leads
to yellow complex 5 with a nearly quantitative yield (ꢁ98%).
Method 2: The solution of SbEt3 (105 g, 0.5 mmol, toluene
20 ml) was added dropwise to a solution of 4,6-di-tert-butyl-N-
(3,5-di-tert-butyl-2-hydroxyphenyl)-o-iminobenzoquinone (IBQ-
AP)H (212 mg, 0.5 mmol, toluene 25 ml). The violet color was dis-
appeared and toluene was changed with hexane. The yellow resi-
due precipitated after solution cooling was recrystallized from
another hexane portion. The storage of this solution at ꢀ18 °C for
3 days gave white X-ray quality crystals which were collected by
filtration and dried in vacuo. Yield is 0.265 g (88.0%). IR (Nujol,
[1] G.A. Abakumov, V.I. Nevodchikov, Dokl. Akad. Nauk SSSR 266 (1982) 1407–
1410.
[2] C.W. Lange, M. Foldeaki, V.I. Nevodchikov, V.K. Cherkasov, G.A. Abakumov, C.G.
Pierpont, J. Am. Chem. Soc. 114 (1992) 4220–4222.
[3] O.-S. Jung, C.G. Pierpont, J. Am. Chem. Soc. 116 (1994) 2229–2230.
[4] D.M. Adams, B. Li, J.D. Simon, D.N. Hendrickson, Angew. Chem., Int. Ed. Engl. 34
(1995) 1481–1483.
[5] D.M. Adams, D.N. Hendrickson, J. Am. Chem. Soc. 118 (1996) 11515–11528.
[6] P.L. Gentili, L. Bussotti, R. Righini, A. Beni, L. Bogani, A. Dei, Chem. Phys. 314
(2005) 9–17.
[7] O. Sato, J. Tao, Yu.-Z. Zhang, Angew. Chem. 119 (2007) 2200–2236.
[8] A. Caneschi, A. Dei, Angew. Chem., Int. Ed. 37 (1998) 3005–3007.
[9] M.W. Lynch, D.N. Hendrickson, B.J. Fitzgerald, C.G. Pierpont, J. Am. Chem. Soc.
103 (1981) 3961–3963.
[10] S. Ye, B. Sarkar, M. Niemeyer, W. Kaim, Eur. J. Inorg. Chem. (2005) 4735–4738.
[11] G.A. Abakumov, V.I. Nevodchikov, V.K. Cherkasov, Dokl. Akad. Nauk SSSR 278
(1984) 641–645.
[12] G.A. Abakumov, G.A. Razuvaev, V.I. Nevodchikov, V.K. Cherkasov, J. Organomet.
Chem. 341 (1988) 485–494.
[13] M. Mitsumi, H. Goto, S. Umebayashi, Y. Ozawa, M. Kobayashi, T. Yokoyama, H.
Tanaka, S.-I. Kuroda, K. Toriumi, Angew. Chem., Int. Ed. 44 (2005) 4164–4168.
[14] M.I. Kabachnik, N.N. Bubnov, A.I. Prokof’ev, S.P. Solodovnikov, Science Rev.
XXIV (1981) 197, and references therein.
KBr, m
, cmꢀ1): 1726 w, 1713 w, 1587 m, 1568 s, 1480 s, 1445 s,
1416 m, 1391 m, 1377 m, 1346 s, 1313 m, 1282 s, 1260 w, 1243
s, 1218 m, 1204 s, 1162 w, 1130 m, 1052 s, 1022 m, 1012 s, 959
s, 931 w, 913 w, 861 s, 841 s, 822 w, 754 m, 739 w, 703 w, 688
w, 679 w, 642 s, 601 w, 548 s, 529 m, 504 w, 451 w, 423 w, 414
w, 403 w. 1H NMR (200 MHz, CDCl3, 20 °C, TMS, d, ppm): 1.38 (s,
3
18 H, 2 t-Bu); 1.43 (s, 18 H, 2 t-Bu); 1.46 (t, JHH = 7.90 Hz, 6H, 2
3
CH2CH3); 2.30 (q, JHH = 7.9 Hz, 4H,
2 CH2CH3); 6.84 (d,
4JHH = 2.2 Hz, 2H, 2 C6H2); 7.78 (d, JHH = 2.2 Hz, 2H, 2 C6H2). 13C
4
[15] C.G. Pierpont, Coord. Chem. Rev. 219–221 (2001) 415–433.
[16] C.G. Pierpont, Coord. Chem. Rev. 216–217 (2001) 99–125.
NMR (50 MHz, CDCl3, 20 °C, d, ppm): 8.13, 23.38, 29.56, 31.86,