A R T I C L E S
Goldup et al.
Scheme 1. Active Metal Template Cadiot-Chodkiewicz Synthesis
of [2]Catenane 3 from Bipyridyl Macrocycle 1 and
Alkyne-Bromoalkyne 2a
that are often difficult or impossible to achieve with standard
template-directed approaches. Here, we report on the application
of the active metal template concept to catenane synthesis using
both single macrocyclization and double macrocyclization
strategies. Heterocircuit (the rings are different) and homocircuit
(the rings are the same) [2]catenanes are assembled using
appropriately functionalized bidentate pyridine ether or bipy-
ridine ligands and either the Cu(I)-catalyzed CuAAC reaction
or the Cu(I)-mediated Cadiot-Chodkiewicz10 heterocoupling
of an alkynyl halide and a terminal alkyne.
Active Metal Template [2]Catenane Synthesis Using the
Cadiot-Chodkiewicz Reaction
We initially investigated a modified Cadiot-Chodkiewicz
coupling11 of a bromoalkyne with a terminal alkyne mediated
by a CuI complex of bidentate bipyridyl macrocycle 1,9d due to
its efficacy in active template rotaxane-forming reactions.9g
(8) (a) Ca´rdenas, D. J.; Gavin˜a, P.; Sauvage, J.-P. J. Am. Chem. Soc. 1997,
119, 2656–2664. (b) Roh, S.-G.; Park, K.-M.; Park, G.-J.; Sakamoto,
S.; Yamaguchi, K.; Kim, K. Angew. Chem., Int. Ed. 1999, 38, 638–
641. (c) Gunter, M. J.; Bampos, N.; Johnstone, K. D.; Sanders, J. K. M.
New J. Chem. 2001, 25, 166–173. (d) Park, K.-M.; Kim, S.-Y.; Heo,
J.; Whang, D.; Sakamoto, S.; Yamaguchi, K.; Kim, K. J. Am. Chem.
Soc. 2002, 124, 2140–2147. (e) Park, K.-M.; Whang, D.; Lee, E.; Heo,
J.; Kim, K. Chem.-Eur. J. 2002, 8, 498–508. (f) Hori, A.; Kataoka,
H.; Okano, T.; Sakamoto, S.; Yamaguchi, K.; Fujita, M. Chem.
Commun. 2003, 182–183. (g) Hori, A.; Yamashita, K.-I.; Fujita, M.
Angew. Chem., Int. Ed. 2004, 43, 5016–5019. (h) Ballester, P.; Capo,
M.; Costa, A.; Deya, P. M.; Frontera, A.; Gomila, R. M. Molecules
2004, 9, 278–286. (i) Baranoff, E.; Griffiths, K.; Collin, J.-P.; Sauvage,
J.-P.; Ventura, B.; Flamigni, L. New J. Chem. 2004, 28, 1091–1095.
(j) Ballester, P.; Costa, A.; Deya, P. M.; Frontera, A.; Gomila, R. M.;
Oliva, A. I.; Sanders, J. K. M.; Hunter, C. A. J. Org. Chem. 2005, 70,
6616–6622. (k) Hori, A.; Sawada, T.; Yamashita, K.-I.; Fujita, M.
Angew. Chem., Int. Ed. 2005, 44, 4896–4899. (l) Davidson, G. J. E.;
Loeb, S. J.; Passaniti, P.; Silvi, S.; Credi, A. Chem.-Eur. J. 2006, 12,
3233–3242. (m) Blight, B. A.; Wisner, J. A.; Jennings, M. C. Chem.
Commun. 2006, 4593–4595. (n) Blight, B. A.; Wisner, J. A.; Jennings,
M. C. Angew. Chem., Int. Ed. 2007, 46, 2835–2838. (o) Yamashita,
K.-I.; Hori, A.; Fujita, M. Tetrahedron 2007, 63, 8435–8439. (p)
Yamashita, K.-I.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2007,
129, 1850–1851. (q) Blanco, V.; Chas, M.; Abella, D.; Peinador, C.;
Quintela, J. M. J. Am. Chem. Soc. 2007, 129, 13978–13986. (r) Liu,
Y.; Bruneau, A.; He, J.; Abliz, Z. Org. Lett. 2008, 10, 765–768. (s)
Salaudeen, A. A.; Kilner, C. A.; Halcrow, M. A. Chem. Commun.
2008, 5200–5202. (t) Koshkakaryan, G.; Parimal, K.; He, J.; Zhang,
X.; Abliz, Z.; Flood, A. H.; Liu, Y. Chem.-Eur. J. 2008, 14, 10211–
10218. (u) Westcott, A.; Fisher, J.; Harding, L. P.; Rizkallah, P.;
Hardie, M. J. J. Am. Chem. Soc. 2008, 130, 2950–2951. (v) Peinador,
C.; Blanco, V.; Quintela, J. M. J. Am. Chem. Soc. 2009, 131, 920–
921. (w) Yamashita, K.-I.; Sato, K.-I.; Kawano, M.; Fujita, M. New
J. Chem. 2009, 33, 264–270. (x) Blight, B. A.; Wisner, J. A.; Jennings,
M. C. Can. J. Chem. 2009, 87, 205–211.
a Reagents and conditions: (i) LiHMDS, THF, -78 °C; (ii) CuI (1 equiv),
5 equiv of 2, 80 °C, 72 h, 21% (over two steps). L ) I, Br, or THF.
Acyclic unit 2 has no potential metal-coordinating sites other
than the terminal alkyne and bromoalkyne reactive functional
groups and should cyclize to form a ring of similar size and
shape to others previously demonstrated to accommodate thread-
forming reactions in active template rotaxane syntheses.9
Building block 2 was treated with LiHMDS (LiN(SiMe3)2) at
-78 °C and then added to a solution of macrocycle 1 and CuI
in THF, and the resulting mixture was stirred for 4 days at room
temperature (Scheme 1), a procedure similar to that used
successfully9g for rotaxane formation. However, little of the
desired catenane product (3) was observed, and only a small
amount of 2 was consumed under these conditions. Increasing
the reaction concentration, raising the reaction temperature to
80 °C, and employing a 5-fold excess of 2 ultimately gave
[2]catenane 3 in 21% yield. The proposed mechanism for the
active metal template Cadiot-Chodkiewicz catenane synthesis
is shown in Scheme 1.12 The modest yield illustrates how the
catenane-forming reaction, in which the reactive end groups
must be tethered together, is much more demanding in terms
of conformational requirements of the ligands, and probably
steric effects, than the equivalent rotaxane-forming reaction (for
which nontethered functional groups are reacted through the
macrocycle cavity to form the interlocked thread). The yield of
(9) (a) Aucagne, V.; Ha¨nni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker,
D. B. J. Am. Chem. Soc. 2006, 128, 2186–2187. (b) Saito, S.;
Takahashi, E.; Nakazono, K. Org. Lett. 2006, 8, 5133–5136. (c) Berna´,
J.; Crowley, J. D.; Goldup, S. M.; Ha¨nni, K. D.; Lee, A.-L.; Leigh,
D. A. Angew. Chem., Int. Ed. 2007, 46, 5709–5713. (d) Aucagne, V.;
Berna´, J.; Crowley, J. D.; Goldup, S. M.; Ha¨nni, K. D.; Leigh, D. A.;
Lusby, P. J.; Ronaldson, V. E.; Slawin, A. M. Z.; Viterisi, A.; Walker,
D. B. J. Am. Chem. Soc. 2007, 129, 11950–11963. (e) Crowley, J. D.;
Ha¨nni, K. D.; Lee, A.-L.; Leigh, D. A. J. Am. Chem. Soc. 2007, 129,
12092–12093. (f) Goldup, S. M.; Leigh, D. A.; Lusby, P. J.; McBurney,
R. T.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2008, 47, 3381–3384.
(g) Berna´, J.; Goldup, S. M.; Lee, A.-L.; Leigh, D. A.; Symes, M. D.;
Teobaldi, G.; Zerbetto, F. Angew. Chem., Int. Ed. 2008, 47, 4392–
4396. (h) Sato, Y.; Yamasaki, R.; Saito, S. Angew. Chem., Int. Ed.
2009, 48, 504–507. For a review on active metal template synthesis,
see: (i) Crowley, J. D.; Goldup, S. M.; Lee, A.-L.; Leigh, D. A.;
McBurney, R. T. Chem. Soc. ReV. 2009, 38, 1530–1541.
(11) (a) Curtis, R. F.; Taylor, J. A. J. Chem. Soc. C 1971, 186–188. (b)
Niedballa, U. In Methoden der Organischen Chemie; Mu¨ller, E., Ed.;
Houben Weyl: Thieme, Stuttgart, 1977; Vol. V/2a, pp 925-937. (c)
Hartbaum, C.; Fisher, H. Chem. Ber. 1997, 130, 1063–1067.
(12) The mechanism of the Cadiot-Chodkiewicz coupling is thought to
proceed in a fashion analogous to that of the Castro-Stephens reaction,
see: (a) Stephens, R. D.; Castro, C. E. J. Org. Chem. 1963, 28, 3313–
3315. (b) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem.,
Int. Ed. 2000, 39, 2632–2657. (c) Bru¨ckner, R. AdVanced Organic
Chemistry: Reaction Mechanisms; Harcourt/Academic Press: San
Diego, CA, 2002; p 538. (d) Siemsen, P.; Felber, B. In Handbook of
C-H Transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim,
Germany, 2005; Vol. 1, pp 53-62, 83, and 84.
(10) (a) Chodkiewicz, W. Ann. Chim. 1957, 2, 819–869. (b) Cadiot, P.;
Chodkiewicz, W. In Chemistry of Acetylenes; Viehe, H. G., Ed.; Marcel
Dekker: New York, 1969; pp 597-647. (c) Alami, M.; Ferri, F.
Tetrahedron Lett. 1996, 37, 2763–2766. (d) Montierth, J. M.; DeMario,
D. R.; Kurth, M. J.; Schore, N. E. Tetrahedron 1998, 54, 1174–11748.
9
15926 J. AM. CHEM. SOC. VOL. 131, NO. 43, 2009