so far: (1) the enzyme-mediated hydrolysis of diesters19 or
mono-transesterification of diols which, when applied to
2,4,6-substitued meso-THP, lead to the generation of up to
three new stereogenic centers, and (2) the asymmetric ring-
opening cross-metathesis involving chiral catalysts.20
In this paper, we report the synthesis of a new class of
meso compounds II bearing a 2,3,4,5,6-substituted tetrahy-
dropyranyl diol motif easily obtained from oxabicycles of
type I and their enantioselective enzymatic desymmetrization,
which reveals and creates up to five new stereogenic centers21
in a one-pot fashion (Scheme 1).
Scheme 1
.
Synthetic Strategy toward THP Containing up to
Five Stereogenic Centers
Figure 1. Natural products containing a highly substituted THP
subunit.
anhydrides,11 diols12 and polyols,13 dienes,14 ketones,15 or
oxabicycles16 has been successfully applied to the total
synthesis of various challenging natural products.17 However,
as highlighted by Hoffmann in a recent review,18 the use of
meso compounds in asymmetric synthesis is greatly depend-
ent on how easy these meso building blocks are built.
Syntheses of THP subunits through enantioselective de-
symmetrization using a preformed THP ring are rare. Indeed,
to our knowledge, only two methods have been described
The synthesis of the meso compounds relied on the
oxabicycles of type I easily available through a highly
diastereoselective [4 + 3] cycloaddition between furan
derivatives and oxyallyl cation precursors following the
procedure developed by Lubineau and Bouchain22 (Scheme
(12) For recent examples of enantioselective catalytic desymmetrization
of meso diols, see: (a) Ku¨ndig, E. P.; Enriquez Garcia, A.; Lomberget, T.;
Perez Garcia, P.; Romanens, P. Chem. Commun. 2008, 3519–3521. (b)
Birman, V. B.; Jiang, H.; Li, X. Org. Lett. 2007, 9, 3237–3240. (c) Zhao,
Y.; Rodrigo, J.; Hoveyda, A. H.; Snapper, M. L. Nature 2006, 443, 67–70.
(d) Shimizu, H.; Onitsuka, S.; Egami, H.; Katsuki, T. J. Am. Chem. Soc.
2005, 127, 5396–5413.
(3) Isolation: Schummer, D.; Gerth, K.; Reichenbach, H.; Ho¨fle, G.
Liebigs Ann. 1995, 685–688. Total Syntheses: (a) Williams, D. R.; Ihle,
D. C.; Plummer, S. V. Org. Lett. 2001, 3, 1383–1386. (b) Bhatt, U.;
Christmann, M.; Quitschalle, M.; Claus, E.; Kalesse, M. J. Org. Chem.
2001, 66, 1885–1893.
(4) For a review on THP, see: (a) Clarke, P. A.; Santos, S. Eur. J. Org.
Chem. 2006, 2045–2053. (b) Larrosa, I.; Romea, P.; Urpi, F. Tetrahedron
2008, 64, 2683–2723.
(13) For recent examples of enantioselective catalytic desymmetrization
of meso polyols, see: (a) Lucas, B. S.; Burke, S. D. Org. Lett. 2003, 5,
3915–3918. (b) Harada, T.; Egusa, T.; Igarashi, Y.; Kinugasa, M.; Oku, A.
J. Org. Chem. 2002, 67, 7080–7090. (c) Cheˆnevert, R.; Rose, Y. S. J. Org.
Chem. 2000, 65, 1707–1709.
(5) For recent examples of Prins reaction in total synthesis, see: (a) Woo,
S. K.; Kwon, M. S.; Lee, E. Angew. Chem., Int. Ed. 2008, 47, 3242–3244.
(b) Cheung, L. L.; Marumoto, S.; Anderson, C. D.; Rychnovsky, S. D. Org.
Lett. 2008, 10, 3101–3104. (c) Seden, P.; Charmant, J. P. H.; Willis, C. L.
Org. Lett. 2008, 10, 1637–1640. For a deeply mechanistic investigations,
see: Jasti, R.; Rychnovsky, S. D J. Am. Chem. Soc. 2006, 128, 13640–
13648.
(14) For examples, see: (a) Gerber-Lemaire, S.; Vogel, P. Eur. J. Org.
Chem. 2003, 2959–2963. (b) Schreiber, S. L.; Goulet, M. T.; Schulte, G.
J. Am. Chem. Soc. 1987, 109, 4718–4720.
(15) For recent examples of catalytic desymmetrization of meso ketones,
see: (a) Chandler, C. L.; List, B. J. Am. Chem. Soc. 2008, 130, 6737–6739.
(b) Ramachary, D. B.; Barbas, C. F. Org. Lett. 2005, 7, 1577–1580.
(16) Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36,
48–58.
(6) Smith III, A. B.; Fox, R. J.; Razler, T. M. Acc. Chem. Res. 2008,
41, 675–687.
(7) For a general review on the Oxa-Michael including THP formation,
see: Nising, C. F.; Bra¨se, S. Chem. Soc. ReV. 2008, 37, 1218–1228.
(8) Dossetter, A. G.; Jamison, T. F.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 1999, 38, 2398–2400.
(17) Some significant examples: Vannusal B: Nicolaou, K. C.; Zhang,
H.; Ortiz, A.; Dagneau, P. Angew. Chem., Int. Ed. 2008, 47, 8605–8610.
Tamiflu: Zutter, U.; Iding, H.; Spurr, P.; Wirz, B. J. Org. Chem. 2008, 73,
4895–4902. Ionomycin: Lautens, M.; Colucci, J. T.; Hiebert, S.; Smith,
N. D.; Bouchain, G. Org. Lett. 2002, 4, 1879–1882. Quadrigemine C and
Psycholeine: Lebsack, A. D.; Link, J. T.; Overman, L. E.; Stearns, B. A.
J. Am. Chem. Soc. 2002, 124, 9008–9009.
(9) Prochiral and meso compounds bearing with a mirror plan: Willis,
M. C. J. Chem. Soc., Perkin Trans. 1999, 1, 1765–1784. Centro-symmetric
molecules: Anstiss, M.; Holland, J. M.; Nelson, A.; Titchmarsh, J. R. Synlett
2003, 1213–1220. Enzymatic desymmetrizations: Garcia-Urdiales, E.; Al-
fonso, I.; Gotor, V. Chem. ReV. 2005, 105, 313–354.
(10) For selected examples on catalytic enantioselective desymmetri-
zation of meso epoxides by ring opening of a nucleophile, see: (a) Arai,
K.; Salter, M. M.; Yamashita, Y.; Kobayashi, S. Angew. Chem., Int. Ed.
2007, 46, 955–957. (b) Matsunaga, S.; Das, J.; Roels, J.; Vogl, E. M.;
Yamamoto, N.; Iida, T.; Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc.
2000, 122, 2252–2260. (c) Schaus, S. E.; Jacobsen, E. N. Org. Lett. 2000,
2, 1001–1004. By based-induced rearrangement, see: So¨dergren, M. J.;
Bertilsson, S. K.; Andersson, P. G. J. Am. Chem. Soc. 2000, 122, 6610–
6618, and references therein.
(18) Hoffmann, R. W. Angew. Chem., Int. Ed. 2003, 42, 1096–1109.
(19) (a) Lampe, T. F. J.; Hoffmann, H. M. R.; Bornsheuer, U. T.
Tetrahedron: Asymmetry 1996, 7, 2889–2900. (b) Cheˆnevert, R.; Goupil,
D.; Rose, Y. S.; Be´dard, E. Tetrahedron: Asymmetry 1998, 9, 4285–4288.
(20) (a) Gillingham, D. G.; Kataoka, O.; Garber, S. B.; Hoveyda, A. H.
J. Am. Chem. Soc. 2004, 126, 12288–12290. (b) Gillingham, D. G.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2007, 46, 3860–3864. (c) Ibrahem,
I.; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131,
3844–3845.
(11) For a general review on enantioselective stereoselective ring opening
of meso anhydrides, see: Atodiresei, L.; Schiffers, I.; Bolm, C. Chem. ReV.
2007, 107, 5683–5712.
(21) We use the term “reveal” because the stereogenic centers pre-exist
before the operation of desymmetrization and “create” because in our case
one carbon is prochiral (C4).
Org. Lett., Vol. 11, No. 21, 2009
4951