Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC04491G
COMMUNICATION
Journal Name
Therefore, a CuI/CuIII mechanism underlying the coupling
reaction of iodobenzene and phenols derivatives stems from the
above experimental and theoretical data; further proof was
achieved by conducting the coupling experiment using the
radical clock 1ꢀallyloxyꢀ2ꢀiodobenzene (rc) as substrate and
Notes and references
‡ CCDC 1054559 (
CCDC 1054556 ([
L
L
3·2HCl), CCDC 1054555 ([(
L
3)CuI(Br)]n) and
3-CuII(OTf)2]) contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from the Cambridge Crystallographic Data Centre
p
MeOꢀphenol (
2
), benzamide (
3
) and cyclohexamine (
4
) as
27, 28
nucleophiles (see Scheme 3).13,
The formation of the
1. D. S. Surry and S. L. Buchwald, Chem. Sci., 2010, 1, 13-31.
2. F. Monnier, Taillefer, M., Angew. Chem. Int. Ed., 2009, 48, 6954-
6971.
3. G. Evano, N. Blanchard and M. Toumi, Chem. Rev., 2008, 108,
3054–3131.
4. A. Casitas and X. Ribas, in Copper-Mediated Cross-Coupling
Reactions, eds. G. Evano and N. Blanchard, John Wiley &
Sons, Hoboken, 2013, ch. 7, pp. 253-279.
cyclized coupling compounds (rcꢀcycꢀx) was not detected in
any reaction, thus indicating the unfeasibility of a radical
mechanism. We did observe relevant amounts of compound rc
H (up to 25% with cyclohexylamine as nucleophile), where
the iodine atom has been substituted by an atom.
ꢀ
4
H
Protodecupration of a putative organometallic arylꢀCu bond has
been already observed in a recent report.19
5. A. Casitas and X. Ribas, Chem. Sci., 2013, 4, 2301-2318.
6. Y. Jiang, L. Xu, C. Zhou and D. Ma, in C-H and C-X
Functionalization. Transition Metal Mediation, ed. X.
Ribas, RSC Publishing, Cambridge, UK, 2013, vol. Catalysis
Series 11, ch. 1, pp. 1-45.
O
O
O
H
CuI (10 mol %), L3 (10 mol %)
I
HO
K3PO4 (2 equiv.)
O
O
O
O
2
+
+
+
O
50 ˚C, N2, 24 h, DMSO
O
rc
rc-2
rc-H
2
rc-cyc-2
32% (46%)
14% (46%)
0% (46%)
7. X. Jin and R. P. Davies, Catal. Sci. Tech., 2017, 7, 2110-2117.
8. G. O. Jones, P. Liu, K. N. Houk and S. L. Buchwald, J. Am. Chem.
Soc., 2010, 132, 6205-6213.
9. J. W. Tye, Z. Weng, G. Giri and J. F. Hartwig, Angew Chem. Int. Ed.,
2010, 49, 2185-2189.
O
HN
H
O
H2N
O
CuI (10 mol %), L3 (10 mol %)
I
K3PO4 (2 equiv.)
O
O
O
NH
+
+
2
+
O
50 ˚C, N2, 24 h, DMSO
rc-3
rc-H
rc-cyc-3
rc
3
10. R. Giri and J. F. Hartwig, J. Am. Chem. Soc., 2010, 132, 15860-
15863.
60% (71%)
0% (71%)
0% (71%)
11. J. W. Tye, Z. Weng, A. M. Johns, C. D. Incarvito and J. F. Hartwig,
J. Am. Chem. Soc., 2008, 130, 9971-9983.
12. S.-L. Zhang, L. Liu, Y. Fu and Q.-X. Guo, Organometallics, 2007,
26, 4546-4554.
HN
O
H
O
CuI (10 mol %), L3 (10 mol %)
NH2
I
CsF (2 equiv.)
HN
O
+
+
O
2
+
90 ˚C, N2, 24 h, DMSO
rc-4
rc-H
rc-cyc-4
4
rc
13. S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science, 2012,
338, 647-651.
14. Q. M. Kainz, C. D. Matier, A. Bartoszewicz, S. L. Zultanski, J. C.
Peters and G. C. Fu, Science, 2016, 351, 681-684.
15. H.-Q. Do, S. Bachman, A. C. Bissember, J. C. Peters and G. C. Fu,
J. Am. Chem. Soc., 2014, 136, 2162-2167.
16. A. Casitas, M. Canta, M. Solà, M. Costas and X. Ribas, J. Am.
Chem. Soc., 2011, 133, 19386-19392.
17. A. Casitas, A. E. King, T. Parella, M. Costas, S. S. Stahl and X.
Ribas, Chem. Sci., 2010, 1, 326-330.
18. K. Yamaguchi, J. Mass Spectrom., 2003, 38, 473-490.
19. M. Rovira, M. Soler, I. Güell, M.-Z. Wang, L. Gómez and X. Ribas,
J. Org. Chem., 2016, 81, 7315-7325.
20. J. Jašík, D. Gerlich and J. Roithová, J. Phys. Chem. A, 2015, 119,
2532-2542.
21. J. Jašík, J. Žabka, J. Roithová and D. Gerlich, Int. J. Mass
Spectrom., 2013, 354–355, 204-210.
22. J. Roithova, Chem. Soc. Rev., 2012, 41, 547-559.
23. J. Jašík, D. Gerlich and J. Roithová, J. Am. Chem. Soc., 2014, 136,
2960-2962.
24. H.-Z. Yu, Y.-Y. Jiang, Y. Fu and L. Liu, J. Am. Chem. Soc., 2010,
132, 18078-18091.
25. G. Lefèvre, G. Franc, A. Tlili, C. Adamo, M. Taillefer, I. Ciofini and
A. Jutand, Organometallics, 2012, 31, 7694-7707.
26. A. Ouali, M. Taillefer, J.-F. Spindler and A. Jutand,
Organometallics, 2007, 26, 65-74.
27. E. Sperotto, G. P. M. v. Klink, G. v. Koten and J. G. d. Vries,
Dalton Trans., 2010, 39, 10338-10351.
28. W. R. Bowman, H. Heaney and P. H. G. Smith, Tetrahedron
Letters, 1984, 25, 5821-5824.
25% (42%)
0% (42%)
14% (42%)
Scheme 3. Selected coupling reactions using radical clock rc as
substrate (conversion in parenthesis).
In conclusion, the efficient auxiliary ligand L3 in CꢀO Ullmannꢀ
type couplings undergoes a decomposition pathway following a
CuI/CuIII mechanism via intramolecular arylation of one of the
secondary amines of the complex. The helium tagging IRPD
studies and DFT mechanistic studies, along with the absence of
cyclized products using rc radical clock and the observation of
protodecupration products, strongly support the existence of
arylꢀCuIII species in the Ullmann couplings using this specially
designed tridentate L3 ligand. Decomposition insight gained
from this model system has turned out to be valuable in catalyst
and process design work, shedding light into the complex
chemistry of Ullmann couplings.
This work was financially supported by grants from the
European Research Council (Starting Grant Project ERCꢀ2011ꢀ
StGꢀ277801 and CoG IsoMS), the Spanish MICINN
(CTQ2016ꢀ77989ꢀP, CTQ2014ꢀ52525ꢀP), the Catalan DIUE of
the Generalitat de Catalunya (2014SGR862). We thank Prof. J.
LloretꢀFillol (ICIQꢀTarragona) for fruitful discussions. X.R.
thanks an ICREA Acadèmia award and F. A. thanks Universitat
de Girona for a PhD grant. We thank COST Action CHAOS
(CA15106) and STR from UdG for technical support.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins