5848
T. Mitra et al. / Tetrahedron Letters 50 (2009) 5846–5849
2. (a) Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.;
Table 1
Rambaldi, M.; Varoli, L.; Landi, L.; Prata, C.; Berridge, M. V.; Grasso, C.; Fiebig,
H.-H.; Kelter, G.; Burger, A. M.; Kunkel, M. W. J. Med. Chem. 2008, 51, 4563; (b)
Young, S. D.; Amblard, M. C.; Britcher, S. F.; Grey, V. E.; Tran, L. O.; Lumma, W.
C.; Huff, J. R.; Schleif, W. A.; Emini, E. E.; O’Brien, J. A.; Pettibone, D. J. Bioorg.
Med. Chem. Lett. 1995, 5, 491; (c) Regina, G. L.; Coluccia, A.; Piscitelli, F.;
Bergamini, A.; Sinistro, A.; Cavazza, A.; Maga, G.; Samuele, A.; Zanoli, S.;
Novellino, E.; Artico, M.; Silvestri, R. J. Med. Chem. 2007, 50, 5034; (d) Ragno, R.;
Artico, M.; Martino, G. D.; Regina, G. L.; Coluccia, A.; Pasquali, A. D.; Silvestri, R.
J. Med. Chem. 2005, 48, 213; (e) Silvestri, R.; Martino, G. D.; Regina, G. L.; Artico,
M.; Massa, S.; Vargiu, L.; Mura, M.; Loi, A. G.; Marceddu, T.; Colla, P. L. J. Med.
Chem. 2003, 46, 2482; (f) Cancio, R.; Silvestri, R.; Ragno, R.; Artico, M.; Martino,
G. D.; Regina, G. L.; Crespan, E.; Zanoli, S.; Hü bscher, U.; Spadari, S.; Maga, G.
Antimicrob. Agents Chemother. 2005, 49, 4546; (g) Hu, W.; Guo, Z.; Chu, F.; Bai,
A.; Yi, X.; Cheng, G.; Li, J. J. Bioorg. Med. Chem. 2003, 11, 1153; (h) Silvestri, R.;
Artico, M.; Martino, G. D.; Regina, G. L.; Loddo, R.; Colla, M. L.; Colla, P. L. J. Med.
Chem. 2004, 47, 3892; (i) Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.;
Rooney, C. S.; Balani, S. K.; Condra, J. H.; Emini, E. A.; Goldman, M. E.; Greenlee,
W. J.; Kauffman, L. R.; O’Brien, J. A.; Sardana, V. V.; Schleif, W. A.; Theoharides,
A. D.; Anderson, P. S. J. Med. Chem. 1993, 36, 1291.
Compilation of the results of base treatment of various sulfones
Substrate
Product
Time (min)
Yield (%)
Yield of deprotected
indole (%)
1a
1b
1c
1d
3
7a
7b
7c
7d
8
120
50
33
81
90
98
97
98
95
95
95 (for 9)
95 (for 10)
O
O
S
R1*OC
COR1*
S
NH
C
C HN
O
O
GB Cyclization
3. Kam, T.-S.; Yoganathan, K.; Li, H.-Y. Tetrahedron Lett. 1996, 37, 8811.
4. (a) Wahlstrom, N.; Slatt, J.; Stensland, B.; Ertan, A.; Bergman, J.; Janosik, T. J. Org.
Chem. 2007, 72, 5886; (b) Gul, W.; Hamann, M. T. Life Sci. 2005, 78, 442; (c)
Newman, D. J.; Cragg, G. M.; Snader, K. M. Nat. Prod. Rep. 2000, 17, 215; (d)
Fernandez, L. S.; Buchanan, M. S.; Carroll, A. R.; Feng, Y. J.; Quinn, R. J.; Avery, V.
M. Org. Lett. 2009, 11, 329; (e) Shirani, H.; Stensland, B.; Bergman, J.; Janosik, T.
Synlett 2006, 15, 2459; (f) Ovenden, S. P. B.; Capon, R. J. J. Nat. Prod. 1999, 62,
1246.
5. (a) Naohiro Isono, N.; Lautens, M. Org. Lett. 2009, 11, 1329; (b) Yin, Y.; Ma, W.;
Chai, Z.; Zhao, G. J. Org. Chem. 2007, 72, 5731; (c) Saito, A.; Oda, S.; Fukaya, H.;
Hanzawa, Y. J. Org. Chem. 2009, 74, 1517; (d) Sakai, N.; Annaka, K.; Fujita, A.;
Sato, A.; Konakahara, T. J. Org. Chem. 2008, 73, 4160; (e) Ackermann, L. Org. Lett.
2005, 7, 439.
NH
HN
R1*OC
COR1*
Michael Addition
O
O
R1*OC
NH
COR1*
HN
O
O
S
S
C
C
NH
COR1*
HN
H H
COR1*
R1*OC
NH
O
O
6. Gibbs, T. J. K.; Tomkinson, N. C. O. Org. Biomol. Chem. 2005, 3, 4043.
7. 2,20Bis indoles have previously been synthesized from an indole Mannich base
in only 27% yield: Messinger, P.; Greve, H. Synthesis 1977, 259.
S
O
O
S
N
δ+
N
δ+
H
N
δ-
δ-
8. Praveen, C.; Wilson, Y.; Perumal, S. P. T. Tetrahedron Lett. 2009, 50, 644.
9. (a) Garratt, P. J.; Neoh, S. B. J. Org. Chem. 1979, 44, 2667; (b) Cheng, Y. S. P.;
Garratt, P. J.; Neoh, S. B.; Rumjanek, V. H. Isr. J. Chem. 1985, 26, 101; (c)
Braverman, S.; Duar, Y.; Segev, D. Tetrahedron Lett. 1979, 17, 3181; (d) Zafrani,
Y.; Gottlieb, H. E.; Sprecher, M.; Braverman, S. J. Org. Chem. 2005, 70, 10166.
10. (a) Sonogashira, K.; Tohoda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467;
(b) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980,
627.
COR1*
H
H
R1*
O
O
R1*
O
O
S
N
N
R1*
O
R1*
O
11. (a) Jones, G. B.; Weight, J. M.; Hynd, G.; Wyatt, J. K.; Rarner, P. M.; Huber, R. S.;
Li, A.; Kilgore, M. W.; Sticca, R. P.; Pollenz, R. S. J. Org. Chem. 2002, 67, 5727; (b)
Basak, A.; Bag, S. S.; Das, A. K. Eur. J. Org. Chem. 2005, 7, 1239.
Scheme 4. Mechanism of GB and nucleophilic addition.
12. Selected spectral data: All 1H and 13C NMR spectra were recorded at 400 and
100 MHz, respectively, in CDCl3 unless mentioned otherwise.
the stable indole system and is thought to be exothermic. We be-
lieve that it is the endothermicity of the first step in GB cyclization
which is responsible for the observed selectivity (Scheme 4).
In conclusion, we have developed a simple method for the
preparation of 2,20-bis-indole derivatives connected via a func-
tional linker involving double Michael-type addition to bis-allenic
sulfone, generated in situ from bis-propargyl sulfone. We have also
demonstrated that intramolecular nucleophilic addition of amides
is more facile than the Garratt-Braverman cyclization pathway
which occurs at room temperature in aryl-substituted allenes.
Our observation is in line with the reported cleavage of DNA14 by
allenic sulfones via alkylation pathway (Nicolaou15).
For 7a: White solid; yield 98%, mp 130 °C; dH 7.78 (d, J = 8.8 Hz, 2H), 7.57 (d,
J = 7.6 Hz, 2H), 7.38 (dt, J = 6.4, 1.2 Hz, 2H), 7.30–7.26 (m, 2H), 6.86 (s, 2H),
5.49–5.42 (m, 4H), 5.16 (d, J = 14 Hz, 2H), 4.96 (d, J = 14.4 Hz, 2H), 1.50 (d,
J = 6.4 Hz, 6H), 1.46 (s, 18H); dC 175.1, 155.3, 135.9, 128.8, 127.1, 125.6, 123.4,
121.5, 115.6, 114.1, 80.2, 53.1, 51.7, 28.3, 18.6; ½aꢁD ꢂ90.5 (c 0.20, CHCl3); MS:
m/z = 689.28 [MNa+], 667.31 [MH+]; HRMS: calcd for C34H42N4O8S + H+
667.2804; found 667.2799.
For 7b: White solid; yield 97%, mp 178 °C; dH 7.86 (d, J = 8.4 Hz, 2H), 7.53 (d,
J = 7.6 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.28–7.24 (m, 2H), 6.87 (app. d, J = 8.0 Hz,
2H), 5.40–5.38 (m, 4H), 5.17 (dd, J = 22.1, 14.4 2H), 4.98 (dd, J = 22.1, 14.4 Hz,
2H), 2.19 (br s, 2H), 1.46 (s, 18H), 1.01 (app. d, J = 5.2 Hz, 6H), 0.86 (app. d,
J = 5.2 Hz, 6H); dC 174.1, 156.0, 136.0, 129.1, 127.4, 125.6, 123.6, 121.5, 115.9,
114.3, 80.1, 59.7, 53.6, 31.5, 28.3, 19.7, 16.4; ½aꢁD ꢂ121.32 (c 0.20, CHCl3); MS:
m/z = 745.32 [MNa+], 723.23 [MH+]; HRMS: calcd for C38H50N4O8S + H+
723.3430; found 723.3427.
For 7c: White solid; yield 98%, mp 75 °C; dH 7.92 (d, J = 8.4 Hz, 2H), 7.54 (d,
J = 7.6 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.27–7.24 (m, 2H), 6.84 (app. d,
J = 10.0 Hz, 2H), 5.48 (br s, 2H), 5.29–5.12 (m, 4H), 4.84 (dd, J = 27.2, 14.4 Hz,
2H), 1.78–1.75 (m, 2H), 1.45 (s, 18H), 1.33–1.25 (m, 4H), 0.98 (d, J = 6.4 Hz, 6H),
0.87 (d, J = 4.4 Hz, 6H); dC 175.7, 155.8, 135.9, 128.9, 127.2, 125.5, 123.5, 121.4,
Acknowledgments
T.M. and S.D. are grateful to CSIR, Government of India, for a fel-
lowship. D.S.T. is thanked for providing funds for the project and
creating 400 MHz NMR facility under the IRPHA programme.
115.3, 114.2, 80.1, 54.3, 53.0, 41.8, 28.3, 24.8, 23.2, 21.5; ½aꢁD ꢂ28.3 (c 0.20,
CHCl3); MS: m/z = 773.36 [MNa+], 751.06 [MH+]; HRMS: calcd for
C40H54N4O8S + H+ 751.3743; found 751.3738.
For 7d: White solid; yield 95%, mp 125 °C; dH 7.88 (d, J = 8.4 Hz, 2H), 7.53 (app.
t, J = 6.8 Hz, 2H), 7.36 (app. t, J = 8.0 Hz, 2H), 7.27–7.09 (m, 12H), 6.81 (app. d,
J = 4.8 Hz, 2H), 5.68 (b, 2H), 5.37 (app. t, J = 8.0 Hz, 2H), 4.96–4.86 (m, 4H),
3.28–3.21 (m, 2H), 2.96–2.89 (m, 2H), 1.35 (s, 18H); dC 174.0, 155.3, 136.0 (2C),
129.4, 128.9, 128.4, 127.0, 126.9, 125.6, 123.6, 121.5, 115.4, 114.3, 80.2, 56.7,
Supplementary data
Supplementary data associated with this article can be found, in
53.1, 39.2, 28.2; ½a D
ꢁ
ꢂ30.8 (c 0.20, CHCl3); MS: m/z = 841.31 [MNa+], 819.25
[MH+]; HRMS: calcd for C46H50N4O8S + H+ 819.3430; found 819.3425.
For 8: White solid; yield 95%, mp 150 °C; dH 7.76 (d, J = 7.6 Hz, 3H), 7.64 (t,
J = 7.2 Hz, 1H), 7.50 (t, J = 8.0, 3H), 7.35 (app. t, J = 7.2 Hz, 1H), 7.26–7.23 (m,
1H), 6.57 (s, 1H), 5.46–5.43 (m, 2H), 5.26 (d, J = 14.4 Hz, 1H), 4.89 (d, J = 14 Hz,
1H), 1.52 (d, J = 6.4 Hz, 3H), 1.44 (s, 9H); dC 175.0, 155.3, 138.6, 136.0, 133.9,
129.1, 128.7, 128.4, 127.4, 125.6, 123.4, 121.6, 115.6, 114.1, 80.1, 56.2, 51.7,
References and notes
1. (a) Bergman, J.; Janosik, T.; Wahlstrom, N. Adv. Heterocycl. Chem. 2001, 80, 1; (b)
Knolker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303; (c) Prudhomme, M. Curr.
Pharm. Des. 1997, 3, 265; (d) Sanchez, C.; Mendez, C.; Salas, J. A. Nat. Prod. Rep.
2006, 23, 1007.
28.3, 18.9; ½a D
ꢁ
+403.6 (c 0.20, CHCl3); MS: m/z = 465.17 [MNa+], 443.13 [MH+];
HRMS: calcd for C23H26N2O5S + H+ 443.1642; found 443.1637.