S. Liu et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5741–5745
5745
3. Widdowson, K. L.; Elliott, J. D.; Veber, D. F.; Nie, H.; Rutledge, M. C.; McCleland,
B. W.; Xiang, J.-N.; Jurewicz, A. J.; Hertzberg, R. P.; Foley, J. J.; Griswold, D. E.;
Martin, L.; Lee, J. M.; White, J. R.; Sarau, H. M. J. Med. Chem. 2004, 47, 1319.
4. Nie, H.; Widdowson, K. L.; Palovich, M. R.; Fu, W.; Elliott, J. D.; Bryan, D. L.;
Burman, M.; Schmidt, D. B.; Foley, J. J.; Sarau, H. M.; Busch-Petersen, J. Bioorg.
Med. Chem. Lett. 2006, 16, 5513.
5. Wang, Y.; Busch-Petersen, J.; Wang, F.; Ma, L.; Fu, W.; Kerns, J. F.; Jin, J.;
Palovich, M. R.; Shen, J.-K.; Burman, M.; Foley, J. J.; Schmidt, D. B.; Hunsberger,
G. E.; Sarau, H. M.; Widdowson, K. L. Bioorg. Med. Chem. Lett. 2007, 17, 3864.
6. McCleland, B. W.; Davis, R. S.; Palovich, M. R.; Widdowson, K. L.; Werner, M. L.;
Burman, M.; Foley, J. J.; Schmidt, D. B.; Sarau, H. M.; Rogers, M.; Salyers, K. L.;
Gorychi, P. D.; Roethke, T. J.; Stelman, G. J.; Azzarano, L. M.; Ward, K. W.; Busch-
Petersen, J. Bioorg. Med. Chem. Lett. 2007, 17, 1713.
7. Merritt, J. R.; Rokosz, L. L.; Nelson, K. H., Jr.; Kaiser, B.; Wang, W.; Stauffer, T. M.;
Ozgur, L. E.; Schilling, A.; Li, G.; Baldwin, J. J.; Taveras, A. G.; Dwyer, M. P.; Chao,
J. Bioorg. Med. Chem. Lett. 2006, 16, 4107.
8. Dwyer, M. P.; Yu, Y.; Chao, J.-P.; Aki, C.; Chao, J.-H.; Biju, P.; Girijavallabhan, V.;
Rindgen, D.; Bond, R.; Mayer-Ezel, R.; Jakway, J.; Hipkin, R. W.; Fossetta, J.;
Gonsiorek, W.; Bian, H.; Fan, X.; Terminnelli, C.; Fine, J.; Lundell, D.; Merritt, J.
R.; Rokosz, L. L.; Kaiser, B.; Li, G.; Wang, W.; Stuffer, T.; Ozgur, L.; Baldwin, J. J.;
Taveras, A. G. J. Med. Chem. 2006, 49, 7603.
SAR trend observed in functional assay: When tested in a human
neutrophil chemotaxis assay, compound 5b exhibited functional
inhibitory activity with an IC50 value of 46 nM. The N-ethyl-N-Ac
incorporated analog of 5c showed much weaker potency with an
IC50 value close to 1.25 lM. The positive control 2b demonstrated
the good potency with IC50 value of 15 nM.
To our satisfaction, three ethylaryl hydrazine bearing analogs
5d, 5f, and 5g also exhibited impressive potencies (IC50) ranging
from 54 to 100 nM, which are almost equal potent to that demon-
strated by 5b. It is also worthwhile to mention that the functional
activities detected with these N-ethylaryl hydrazine analogs tracks
well with the receptor binding potencies obtained (Table 1).
In accordance with the reduced CXCR2 binding affinities, com-
pounds 5e and 5i exhibited about 10-fold weaker functional activ-
ity than 5g or 5f with IC50 value of 840 nM. The least potent analog
5 h displayed weakest functional activity (IC50 = 6.34 lM).
9. Chao, J.-H.; Taveras, A. G.; Chao, J.-P.; Aki, C.; Dwyer, M.; Yu, Y.; Purakkattle, B.;
Rindgen, D.; Jakway, J.; Hipkin, W.; Fosetta, J.; Fan, X.; Lundell, D.; Fine, J.;
Minnicozzi, M.; Phillips, J.; Merritt, J. R. Bioorg. Med. Chem. Lett. 2007, 17, 3778.
10. Baxter, A.; Cooper, A.; Kinchin, E.; Moakes, K.; Unitt, J.; Wallace, A. Bioorg. Med.
Chem. Lett. 2006, 16, 960.
11. PCT Patent: WO2006064228 (AZ).
12. PCT Patent: WO2001058906 (AZ).
13. PCT Patent: WO2005066147A1 (Jul. 21, 2005) (Schering).
In vitro microsomal stability evaluation—in light of the demon-
strated promising binding affinity for the CXCR2 receptor and good
potency in functional assay, three newly designed hydrazine con-
taining antagonists 5b, 5d, and 5g along with two positive controls
2a and 2b were tested for metabolic stability upon incubation with
human liver microsome at 37 °C for 30 min (with 1 lM final con-
centration for each compound) according to the protocol reported
by Merritt et al.7 All test compounds including 5b, 5d, and 5g exhib-
ited good stability with >50% of drug remaining after incubation at
37 °C for 120 min (T1/2 >2 h). Furthermore, compound 5b showed
good stability against rat microsome with a T1/2 value of 84 min.
In this communication, we have reported our preliminary data
on the discovery of a novel series of 3-amino-4-hydrazine-cyclo-
but-3-ene-1,2-dione containing CXCR2 antagonists including the
bis-N-ethyl bearing analog 5b. This compound was shown to pos-
sess potent CXCR2 binding affinity (Ki = 120 nM), adequate CXCR1
selectivity (80-fold), functional activity (IC50 = 46 nM) against IL-8-
mediated chemotaxis in a Chinese hamster ovary (CHO) cell line
(CXCR2 expressing line) as well as acceptable rat and human
microsomal stability. In addition, replacement of the bis-N-ethyl
moiety in 5b with N-ethyl-N-aryl hydrazines led to 5d and 5g, each
of which displayed good CXCR2 binding affinity (Ki = 110 or 130 nM)
and acceptable human microsomal stability (T1/2 >120 min). It is
conceivable that further modification of either bis-N-alkyl or
N-alkyl-N-aryl hydrazine moieties could yield more potent and
selective CXCR2 antagonists. The results of this research will be
reported in due time.
14. PCT Patent: 2005068460A1 (Jul. 28, 2005) (Schering).
15. Biju, P.; Yu, Y. Tetrahedron Lett. 2007, 48, 5279.
16. For hydrazine moiety incorporated HIV protease inhibitors, see: Reddy, G. S. K.
K.; Ali, A.; Nalam, M. N. L.; Anjum, S. G.; Cao, H.; Nathans, R. S.; Schiffer, C. A.;
Rana, T. M. J. Med. Chem. 2007, 50, 4316.
17. For hydrazine moiety incorporated HRV 3C protease inhibitors, see: Kati, W.
M.; Sham, H. L.; McCall, J. O.; Montgomery, D. A.; Wang, G. T.; Rosenbrook,
W.; Miesbauer, L.; Buke, A.; Norbeck, D. W. Arch. Biochem. Biophys. 1999, 362,
363.
18. For hydrazine bearing HCV protease inhibitor, see: Bailey, M. D.; Halmos, T.;
Goudreau, N.; Lescop, E.; Llinas-Brunet, M. J. Med. Chem. 2004, 47, 3788.
19. For hydrazine bearing SARS 3CL protease inhibitor, see: Anand, K.; Ziebuhr, J.;
Wadhwani, P.; Mesters, J. R.; Hilgenfeld, R. Science 2003, 300, 1763.
20. For hydrazine moiety bearing approved drug (Reyataz), see: Bold, G.; Faessler,
A.; Capraro, H.-G.; Cozens, R.; Klimkait, T.; Lazdins, J.; Mestan, J.; Poncioni, B.;
Rosel, J.; Stover, D.; Tintelnot-Blomley, M.; Acemoglu, F.; Beck, W.; Boss, E.;
Eschbach, M.; Hurlimann, T.; Masso, E.; Roussel, S.; Ucci-Stoll, K.; Wyss, D.;
Lang, M. J. Med. Chem. 1998, 41, 3387.
21. Sajiki, H.; Ikawa, T.; Hirota, K. Org. Lett. 2004, 6, 4977.
22. Iranpoor, N.; Firouzabadi, H.; Pourali, A.-R. Synthesis 2003, 10, 1591.
23. Iffland, D. C.; Cerda, E. J. Org. Chem. 1963, 28, 2769.
24. WX’s Binding assay conditions:Reagent: wheatgerm-agglutinin coated SPA
beads and [
125I]IL-8 were from GE Healthcare (Piscataway, NJ), receptor
membranes CXCR2 and CXCR1 were from Chemicon (Temecula, CA). HEPES
was from Sigma (St Louis, MO). MgCl2 and KOH were from SCRC (Shanghai,
China). DMSO was from Sigma–Aldrich (Steinheim, Germany).Method: for each
200
(0.020
l
L reaction, a working mixture of receptor over-expressing membranes
g/ CXCR2 or 0.040 g/ CXCR1) and 2 mg/mL wheatgerm-
l
lL
l lL
agglutinin coated SPA beads was prepared in assay buffer. The assay buffer
was 25 mM HEPES, 3 mM MgCl2, pH 7.4. This mixture was incubated on ice for
5 min. A 0.040 nM 125I labeled IL-8 stock solution was prepared in the assay
buffer. Test compounds were serially diluted by half-log concentration in
DMSO. The above solutions were added to a 96 well plate (Perking Elmer) in
Acknowledgment
We are indebted to Kai Gu and Dr. Ning Zhao for analytic
support.
the following sequence: 45
100 L of membranes and SPA bead mixture and 50
stock solution. The assay plates were incubated for 2 h at room temperature,
keeping from light. Binding was detected using Perking Elmer-Wallace
lL assay buffer and 5
l
L test compound or DMSO,
l
lL [125I]IL-8 solution
References and notes
a
Microbeta 1450 liquid scintillation counter. The data was analyzed using
SigmaPlot (Systat Software Inc., San Jose, CA).
1. Review: Busch-Petersen, J. Curr. Top. Med. Chem 2006, 6, 1345.
2. Review: Moser, B.; Wolf, M.; Walz, A.; Loetscher, P. Trends Immunol. 2004, 25, 75.