Kim et al.
JOCNote
antioxidant activities.6 For example, as shown in Figure 1,
3-(γ,γ-dimethylpropenyl)moracin M was known to exhibit
modest cyclooxygenase inhibitory activity whereas moracin
O was recently reported to strongly inhibit hypoxia-induced
HIF-1R accumulation in human hepatocellular carcinoma
cell line Hep3B cells.
TABLE 1. Screening of the Reaction Conditions
entry catalysta
solvent
i-PrOH
i-PrOH
temp (°C) time (h) yield (%)b
1
2
PtCl2
CuI
80
80
80
80
80
80
80
80
80
80
50
80
50
80
40
40
40
rt
5
24
24
24
24
24
24
24
24
34
24
24
24
34
48
96
48
3
60
NRc
CMd
NR
NR
NR
NR
CM
CM
30
3
4
CuCl2 i-PrOH
ZnCl2 i-PrOH
5
6
7
InCl3
BiCl3
AuCl3 t-PrOH
i-PrOH
i-PrOH
8
9
PtCl2
PtCl2
PtCl2
PtCl2
PtCl2
PtCl2
PtCl2
PtCl2
PtBr2
PtI2
MeOH
EtOH
t-PrOH
dioxane
dioxane:H2O (1:1)
toluene
DME
DME:MeOH (20:1)
DME:MeOH (20:1)
DME:MeOH (20:1)
DME:MeOH (20:1)
DME
10
11
12
13
14
15
16
17
18
19
20
21
22
23
CM
23
CM
25
86
70
NR
60
75
78
76
62
FIGURE 1. Some representative 2-arylbenzofuran natural pro-
ducts.
The requisite quinols for this study were easily prepared
from the nucleophilic addition of lithium acetylides to 1,4-
benzoquinones. Optimal reaction conditions were screened
with 6a. Initial screening of the catalysts revealed that PtCl2
is capable of promoting this domino sequence, furnishing the
desired benzofuran product in 60% yield (Table 1, entries
1-7). Comparison of the NMR data of the product with the
literature values7 indicates that the product isolated from
the reaction mixture is 5-hydroxy-2-phenylbenzofuran 9a.
Later, its structure was unambiguously established on the
basis of X-ray crystallographic analysis of O-methylated
analogue, 9a0.8,9 No isomeric 6-hydroxy-2-phenylbenzo-
furan10 was observed from the crude NMR analysis.
It turned out that solvent also plays a crucial role in this
process. While the reaction in either MeOH or EtOH at 80 °C
gave a complex mixture, use of i-PrOH led to 60% of
9a (Table 1, entries 1, 8, and 9). A rather low yield of 9a,
however, was obtained in t-BuOH (Table 1, entry 10).
Interestingly, no product was isolated in dioxane whereas
the mixed solvent system (dioxane:H2O, 1:1) afforded the
desired product albeit in low yield (Table 1, entries 11 and
12). No desired product was obtained in toluene at 50 °C
PtCl4
PtCl4
PtCl4
rt
rt
rt
rt
3
6
24
24
24
e
DME
f
PtCl4e DME
PtCl4e THF
PtCl4
EA
rt
60
a10 mol % catalyst loading unless otherwise noted. bIsolated yield.
cNo reaction. dComplex mixture. e5 mol %. f1 mol %.
(Table 1, entry 13). Although longer reaction time is re-
quired, we found that lowering the reaction temperature is
beneficial.11 In particular, we were able to obtain 9a in 86%
yield by using a mixed solvent (DME:MeOH, 20:1) after 48 h
at 40 °C (Table 1, entries 14 and 15). Other Pt(II) salts (PtBr2
and PtI2) were examined under these conditions, displaying
lower reactivities than PtCl2 (Table 1, entries 16 and 17).
Surprisingly, PtCl4 was found to induce this domino se-
quence at room temperature, furnishing 9a in 60-75% yields
(Table 1, entries 18 and 19). Even 5 or 1 mol % catalyst
loading of PtCl4 was effective without compromising the
yield (Table 1, entries 20 and 21). It seemed that superior
reactivity of PtCl4 to PtCl2 might be, in part, ascribed to the
solubility issues as PtCl4 is completely soluble in DME
whereas PtCl2 is not. Solvents such as THF or EA can be
used although the yield was a little lower than that in DME
(Table 1, entries 22 and 23).
(6) (a) Demizu, S.; Kajiyama, K.; Takahashi, K.; Hiraga, Y.; Yamamoto,
S.; Tamura, Y.; Okada, K.; Kinoshita, T. Chem. Pharm. Bull. 1988, 36, 3474.
(b) Basnet, P.; Kadota, S.; Terashima, S.; Shimizu, M.; Namba, T. Chem.
Pharm. Bull. 1993, 41, 1238. (c) Su, B.-N.; Cuendet, M.; Hawthorne, M. E.;
Kardono, L. B. S.; Riswan, S.; Fong, H. H. S.; Mehta, R. G.; Pezzuto, J. M.;
Kinghorn, A. D. J. Nat. Prod. 2002, 65, 163. (d) Dat, N. T.; Jin, X.; Lee, K.;
Hong, Y.-S.; Kim, Y. H.; Lee, J. J. J. Nat. Prod. 2009, 72, 39. (e) Kapche, G.
D. W. F.; Fozing, C. D.; Donfack, J. H.; Fosto, G. W.; Amadou, D.; Tchana,
A. N.; Bezabih, M.; Moundipa, P. F.; Ngadjui, B. T.; Abegaz, B. Phyto-
chemistry 2009, 70, 216. (f) Ni, G.; Zhang, Q.-J.; Zheng, Z.-F.; Chen, R.-Y.;
Yu, D.-Q. J. Nat. Prod. 2009, 72, 966.
Mechanistically, an alkyne moiety in 6a migrates to the
adjacent carbon to generate alkynone A,12 which undergoes
cyclization with the aid of Pt salt13 to give benzofuran 9a
(11) Benzofuran product seemed unstable to high temperature.
(7) (a) Domschke, G. J. Prakt. Chem. 1966, 32, 144. (b) Csekei, M.;
Novak, Z.; Timari, G.; Kotschy, A. ARKIVOC 2004, 285. (c) Alvey, L.;
Prado, S.; Huteau, V.; Saint-Joanis, B.; Michel, S.; Koch, M.; Cole, S. T.;
Tillequin, F.; Janin, Y. L. Bioorg. Med. Chem. 2008, 16, 8264.
(12) For the cyclization of alkynones, see: (a) Fukuda, Y.; Shiragami, H.;
Utimoto, K.; Nozaki, H. J. Org. Chem. 1991, 56, 5816. (b) Sromek, A. W.;
Kel’in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2004, 43, 2280. (c) Yao,
T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164. (d) Patil, N.
T.; Wu, H.; Yamamoto, Y. J. Org. Chem. 2005, 70, 4531. (e) Kirsch, S. F.;
(8) 9a0 was prepared in a quantitative yield upon exposure of 9a to MeI
and Cs2CO3 in acetone at rt. See the Supporting Information for spectral
data of 5-methoxy-2-phenylbenzofuran (9a0). See also: Duan, X.-F.; Zeng,
J.; Zhang, Z.-B.; Zi, G.-F. J. Org. Chem. 2007, 72, 10283.
ꢀ
Binder, J. T.; Liebert, C.; Menz, H. Angew. Chem., Int. Ed. 2006, 45, 5878.
(f)Zhang, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2006, 45, 6704. (g) Zhang,
G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814. (h) Xiao,
Y.; Zhang, J. Angew. Chem., Int. Ed. 2008, 47, 1903. (i) Sniady, A.; Morreale,
M. S.; Wheeler, K. A.; Dembinski, R. Eur. J. Org. Chem. 2008, 3449.
(13) (a) Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.; Mizushima,
Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 15423.
(b) Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127,
(9) CCDC 739254 contains the supplementary crystallographic data for
compound 9a0. These data can be obtained free of charge from The
request/cif.
(10) McAllister, G. D.; Hartley, R. C.; Dawson, M. J.; Knaggs, A. R.
J. Chem. Soc., Perkin Trans. 1 1998, 3453.
€
15022. (c) Furstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024.
J. Org. Chem. Vol. 74, No. 21, 2009 8493