Kwit et al.
JOCArticle
molecules.5 Rapid development of new theoretical methods
and dramatic increase of computational power observed
during the past decade led to the use of advanced calculations
not only for model, simple compounds but also for real
molecules, products of asymmetric syntheses, or isolated
from natural sources.6 Experimental/theoretical approach
emerges now as a general and convenient method for the
determination of absolute stereochemistry, where the selec-
tion of a proper method of calculation, which is case
sensitive, is based on the literature data and above all on
the compromise between the accuracy and the computa-
tional costs.7 In the recent years additional methodology
based on comparison between experimental and calculated
vibrational circular dichroism spectra became highly popu-
lar.8 The main advantage of this method is based on doing
the calculations for the electronic ground state, which re-
quires less computational power that calculations involving
electronically excited states.
It is well-known that the conformation of a molecule has a
substantial influence on its physical and chemical proper-
ties.9 Thus, apart from suitability of the computational
method used for calculation of chiroptical properties, reli-
able conformational analysis is of critical importance for
arriving at computational results close to the experimental
ones. It has been shown that even minor changes in molecule
conformation can result in a change of sign and/or magni-
tude of the calculated CD and or OR,10 especially in the cases
of simple nonpolar compounds.11 For generation of all
possible conformers of the molecule in question, the Monte
Carlo search or systematical conformational search with the
use of common force field methods is the most frequently
used solution. In the latter case, the number of possible
conformers grows rapidly with the increase of variables such
as the number of torsion angles or other structural para-
meters taken into consideration.12 While conformational
analysis could be neglected for rigid molecules,13 computa-
tional conformation analysis of flexible molecules should be
done with the highest available accuracy.
Among the computational methods available for stereo-
chemical investigations, those based on the density functional
theory (DFT)14 are most popular. The most widely used
B3LYP hybrid functional,15 in conjunction with a rather small
6-31G(d) basis set, during the past decade became “the Swiss
army knife” for solving many structural and stereochemical
problems. There are many spectacular examples of the use of
this combination of functional/basis set for the determination
of structure and/or AC for complex molecular systems, con-
taining up to 100 carbon atoms.16 Critics of this approach
maintain that correct results obtained with the use the B3LYP/
6-31G(d) method are due to mutual cancelation of the func-
tional and basis set errors and suggest that other density
functionals or higher correlated methods like coupled cluster17,18
and/or enhanced basis sets, especially those including diffuse
p-functions at hydrogen atoms, that sometimes have a
marked effect on the calculated OR values,19 are used.
There are at least three frequently used algorithms for
calculations of chiroptical properties of flexible molecules.
These are in the order of increasing of computational cost:
(a) conformational search at the MM level/geometry opti-
mization and calculation of spectroscopic properties at the
B3LYP/6-31G(d) or other comparable level;20 (b) conformational
(5) Rinderspacher, B. C.; Schreiner, P. R. J. Phys. Chem. A 2004, 108,
2867–2870.
(6) Reviews: (a) Crawford, T. D.; Tam, M. C.; Abrams, M. L. J. Phys.
Chem. A 2007, 111, 12057–12068. (b) Crawford, D. T. Theor. Chem. Acc.
2006, 115, 227–245. (c) Neese, F. Coord. Chem. Rev. 2009, 253, 526–563.
(7) (a) Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P. J.
J. Phys. Chem. A 2000, 104, 1039–1046. (b) Stephens, P. J.; Devlin, F. J.;
Cheeseman, J. R.; Frisch, M. J.; Mennucci, B.; Tomasi, J. Tetrahedron:
Asymmetry 2000, 11, 2443–2448. (c) Stephens, P. J.; Devlin, F. J.; Cheese-
man, J. R.; Frisch, M. J. J. Phys. Chem. A 2001, 105, 5356–5371.
(d) Mennucci, B.; Tomasi, J.; Cammi, R.; Cheeseman, J. R.; Frisch, M. J.;
Devlin, F. J.; Gabriel, S.; Stephens, P. J. J. Phys. Chem. A 2002, 106, 6102–
6113. (e) Grimme, S. Chem. Phys. Lett. 2001, 339, 380–388. (f) Grimme, S.;
Furche, F.; Ahlrichs, R. Chem. Phys. Lett. 2002, 361, 321–328. (g) Autsch-
bach, J.; Patchkovskii, S.; Ziegler, T.; van Gisbergen, S. J. A.; Baerends, E. J.
J. Chem. Phys. 2002, 117, 581–592. (h) Ruud, K.; Helgaker, T. Chem. Phys.
Lett. 2002, 352, 533–539. (i) Wang, Y.; Raabe, G.; Repges, C.; Fleischhauer,
J. Int. J. Quantum Chem. 2003, 93, 265–270. (j) Braun, M.; Hohmann, A.;
(12) (a) Cramer, C. J. Essentials of Computational Chemistry; Wiley:
Chichester, 2004. (b) Young, D. C. Computational Chemistry; Wiley-Inter-
science: New York, 2001.
ꢁ
(13) (a) Stephens, P. J.; McCann, D. M.; Butkus, E.; Stoncius, S.;
Cheeseman, J. R.; Frisch, M. J. J. Org. Chem. 2004, 69, 1948–1958.
(b) Stephens, P. J.; McCann, D. M.; Devlin, F. J.; Cheeseman, J. R.; Frisch,
M. J. J. Am. Chem. Soc. 2004, 126, 7514–7521. (c) Stephens, P. J.; McCann,
D. M.; Devlin, F. J.; Smith, A. B. III. J. Nat. Prod. 2006, 69, 1055–1064.
(14) (a) Koch, W. Holthausen, M. C. A Chemist’s Guide to Density Func-
tional Theory; Wiley-VCH: Weinheim, 2001. (b) Geerlings, P.; De Proft, F.;
Langenaeker, W. Chem. Rev. 2003, 103, 1793–1873.
(15) (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157–167.
(b) Tirado-Rives, J.; Jorgensen, W. L. J. Chem. Theory Comput. 2008, 4, 297–
306.
€
Rahematpura, J.; Buhne, C.; Grimme, S. Chem.;Eur. J. 2004, 10, 4584–
4593. (k) Schuhly, W.; Crockett, S. L.; Fabian, W. M. F. Chirality 2005, 17,
€
250–256.
(16) (a) Review : (a) Pecul, M.; Ruud, K. The Ab Initio Calculation of Optical
Rotation and Electronic Circular Dichroism. Adv. Quantum Chem. 2005, 50,
185–212. (b) Crawford, T. D.; Owens, L. S.; Tam, M. C.; Schreiner, P. R.; Koch, H.
J. Am. Chem. Soc. 2005, 127, 1368–1369.
(8) Reviews: (a) Stephens, P. J.; Devlin, F. J.; Pan, J.-J. Chirality 2008, 20,
643–663. (b) Freedman, T. B.; Cao, X.; Dukor, R. K.; Nafie, L. A. Chirality
2003, 15, 743–758.
(9) (a) Mori, T.; Inoue, Y.; Grimme, S. J. Org. Chem. 2006, 71, 9797–
9806. (b) Marchesan, D.; Coriani, S.; Forzato, C.; Nitti, P.; Pitacco, G.;
Ruud, K. J. Phys. Chem. A 2005, 109, 1449–1453. (c) Grimme, S.; Bahlmann,
A.; Haufe, G. Chirality 2002, 14, 793–797. (d) Kwit, M.; Sharma, N. D.;
Boyd, D. R.; Gawronski, J. Chirality 2008, 20, 609–620. (e) Kwit, M.;
Sharma, N. D.; Boyd, D. R.; Gawronski, J. Chem.;Eur. J. 2007, 13,
5812–5821.
(10) (a) Pecul, M. Chem. Phys. Lett. 2006, 418, 1–10. (b) Kundrat, M. D.;
Autschbach, J. J. Phys. Chem. A 2006, 110, 4115–4123. (c) Kundrat, M. D.;
Autschbach, J. J. Phys. Chem. A 2006, 110, 12908–12917. (d) Pecul, M.;
Ruud, K.; Rizzo, A.; Helgaker, T. J. Phys. Chem. A 2004, 108, 4269–4276.
(e) Wiberg, K. B.; Vaccaro, P. H.; Cheeseman, J. R. J. Am. Chem. Soc. 2003,
125, 1888–1896. (f) Specht, K. M.; Nam, J.; Ho, D. M.; Berova, N.; Kondru,
R. K.; Beratan, D. N.; Wipf, P.; Pascal, R. A. Jr.; Kahne, D. J. Am. Chem.
Soc. 2001, 123, 8961–8966.
(17) (a) Ruud, K.; Stephens, P. J.; Devlin, F. J.; Taylor, P. R.; Cheeseman,
J. R.; Frisch, M. J. Chem. Phys. Lett. 2003, 373, 606–614. (b) Kongsted, J.;
Pedersen, T. B.; Strange, M.; Osted, A.; Hansen, A. E.; Mikkelsen, K. V.;
Pawlowski, F.; Jørgensen, P.; Hauttig, C. Chem. Phys. Lett. 2005, 401, 385–
392. (c) Seino, J.; Honda, Y.; Hada, M.; Nakatsuji, H. J. Phys. Chem. A 2006,
110, 10053–10062. (d) Crawford, T. D.; Stephens, P. J. J. Phys. Chem. A
2008, 112, 1339–1345. (e) Russ, N. J.; Crawford, D. T. Phys. Chem. Chem.
Phys. 2008, 10, 3345–3352.
(18) (a) Goerigk, L.; Grimme, S. J. Phys. Chem. A 2009, 113, 767–776.
(b) Grimme, S.; Neese, F. J. Chem. Phys. 2007, 127, 154116.
(19) (a) Wiberg, K. B.; Wilson, S. M.; Wang, Y.; Vaccaro, P. H.;
Cheeseman, J. R.; Luderer, M. R. J. Org. Chem. 2007, 72, 6206–6214.
(b) Wiberg, K. B.; Wang, Y.; Vaccaro, P. H.; Cheeseman, J. R.; Trucks,
G.; Frisch, M. J. Chem. Phys. A 2004, 108, 32–38.
(20) (a) Giorgio, E.; Minichino, C.; Viglione, R. G.; Zanasi, R.; Rosini, C.
J. Org. Chem. 2003, 68, 5186–5192. (b) Giorgio, E.; Tanaka, K.; Verotta, L.;
Nakanishi, K.; Berova, N.; Rosini, C. Chirality 2007, 19, 434–445.
(c) Petrovic, A. G.; He, J.; Polavarapu, P. L.; Xiao, L. S.; Armstrong,
D. W. Org. Biomol. Chem. 2005, 3, 1977–1981. (d) Stephens, P. J.; Pan,
J. J.; Devlin, F. J.; Cheeseman, J. R. J. Nat. Prod. 2008, 71, 285–288.
€
(11) (a) Grimme, S.; Muck-Lichtenfeld, C. Chirality 2008, 20, 1009–1015.
(b) Wiberg, K. B.; Wang, Y.; Wilson, S. M.; Vaccaro, P. H.; Jorgensen, W. L.;
Crawford, T. D.; Abrams, M. L.; Cheeseman, J. R.; Luderer, M. J. Phys.
Chem. A 2008, 112, 2415–2422. (c) McCann, D. M.; Stephens, P. J.;
Cheeseman, J. R. J. Org. Chem. 2004, 69, 8709–8717.
8052 J. Org. Chem. Vol. 74, No. 21, 2009