5922
G. Wei et al. / Tetrahedron Letters 50 (2009) 5920–5922
2. Prehm, P. Biochem. J. 2006, 398, 469.
BzO
MeOOC
O
3. Weigel, P. H.; DeAngelis, P. L. J. Biol. Chem. 2007, 282, 36777.
4. Newman, R. H.; Zhang, J. Nat. Chem. Biol. 2008, 4, 382.
a
b
BzO
O
2
F
1
O
O
P
BzO
AcHN
5. (a) Xia, J.; Xue, J.; Locke, R. D.; Chandrasekaran, E. V.; Srikrishnan, T.;
Matta, K. L. J. Org. Chem. 2006, 71, 3696; (b) Chandrasekaran, E. V.; Xue,
J.; Xia, J.; Chawda, R.; Piskorz, C.; Locke, R. D.; Neelamegham, S.; Matta,
K. L. Biochemistry 2005, 44, 15619; (c) Chandrasekaran, E. V.; Lakhaman,
S. S.; Chawda, R.; Piskorz, C. F.; Neelamegham, S.; Matta, K. L. J. Biol.
Chem. 2004, 279, 10032; (d) Chandrasekaran, E. V.; Jain, R. K.; Matta, K.
L. J. Biol. Chem. 1992, 267, 23806.
OBz
O
OH
O
Et3NH
14
Scheme 3. Synthesis of F-4-GlcAb(1?3)GlcNAc-UDP 1. Reagents and conditions:
(a) H2, Pd–C, EtOAc–MeOH (1:1), Et3N, rt, 6 h, 91%; (b) (i) UMP-morpholidate, 1H-
tetrazole, DMF-py (3:1), rt, 2 d; (ii) 3 M NaOH, MeOH, rt, 10 h; (iii) RP column HPLC;
gel-filtration column HPLC, 42% from 14.
6. (a) Xue, J.; Khaja, S. D.; Locke, R. D.; Matta, K. L. Synlett 2004, 5, 861; (b) Xue, J.;
Kumar, V.; Khaja, S. D.; Chandrasekaran, E. V.; Locke, R. D.; Matta, K. L.
prepared according to the method described in: Vauzeilles, B.; Dausse, B.;
Palmier, S.; Beau, J.-M. Tetrahedron Lett. 2001, 42, 7567.
synthesis of b1?3 linked disaccharide by the glycosylation of n-
pentenyl glycoside acceptor with GlcA donor without obtaining
the corresponding orthoester as the side product.13e In conclusion,
the efficacy of glycosylation with a donor can depend on the nature
of the sugar alcohol and the protecting groups present there in.
Thus, it is also perceptible from above discussion that the glycosyl-
ation reaction described by us is extremely efficient and superior to
most of the previously described syntheses for b1?3 linkage. Our
glycosylation reaction provides a route to obtain F-4-GlcAb1?3
linked disaccharide with complete b1?3 stereoselectivity and high
yield.
7. (a) Brown, R. T.; Carter, N. E.; Mayalrap, S. P.; Scheinmann, F. Tetrahedron 2000, 56,
7591; (b) In a separate study in our laboratory, the reaction of commonly used
methyl 2,3,4-tri-O-acetyl-1-O-trichloroacetimidoyl-
nate with NAP 2,4,6-tri-O-benzoyl-b- -galactopyranoside did not proceed to
give the desired b1?3 disaccharide in a satisfactory yield but afforded the
transacetylated product viz., NAP 3-acetyl-2,4,6-tri-O-benzoyl-b- -galactopy-
ranoside. Hence, it is evident that the glycosylation with GlcA donor can depend
upon the nature of the acceptor also.
a/b-D-glucopyranosyluro-
D
D
8. Rye, C. S.; Withers, S. G. J. Am. Chem. Soc. 2002, 124, 9756.
9. Lin, F.; Peng, W.; Xu, W.; Han, X.; Yu, B. Carbohydr. Res. 2004, 339, 1219.
10. Xia, J.; Abbas, S. A.; Locke, R. D.; Piskorz, C. F.; Alderfer, J. L.; Matta, K. L.
Tetrahedron Lett. 2000, 41, 169.
To proceed further in our synthetic sequence, NHTroc group of
11 was transformed to NHAc using Zn–Ac2O to furnish 12 in 86%
yield. Selective removal of NAP with DDQ in CH2Cl2–MeOH (4:1)
and subsequent phosphorylation with tetrabenzyl pyrophospgate14
11. Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. Engl. 1980, 19, 731.
12. González, A. G.; Brouard, I.; León, F.; Padrón, J. I.; Bermejo, J. Tetrahedron Lett.
2001, 42, 3187.
13. (a) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212; (b) Chen, L.; Kong, F.
Carbohydr. Res. 2002, 337, 1373; (c) Yeung, B. K. S.; Hill, D. C.; Janicka, M.;
Petillo, P. A. Org. Lett. 2000, 2, 1279; (d) Allen, J. G.; Fraser-Reid, B. J. Am. Chem.
Soc. 1999, 121, 468; (e) Rele, S. M.; Iyera, S. S.; Chaikof, E. L. Tetrahedron Lett.
2007, 48, 5055.
gave the benzyl-protected anomeric phosphate 2 as the desired
a
anomer in high yield. Appearance of significant signals in the 1H
NMR spectrum of 2 at d = 5.71 (dd, J1,2 = 3.4 Hz, J1,P = 6.4 Hz, 1H,
H-1of GlcNAc), and the signal in the 13P NMR of 2 at d = ꢁ1.91 (s,
1P) confirmed that the newly formed linkage between the disaccha-
14. Takaku, H.; Ishida, H.-k.; Fujita, M.; Inazu, T.; Ishida, H.; Kiso, M. Synlett 2007,
818. and references cited therein.
15. The selected physical data of key compounds is listed: Compound 3: ½a D25
ꢂ
+8.9 (c
0.9, CHCl3); 1H NMR (400 MHz, CDCl3): d (ppm) = 3.86 (s, 3H, COOMe), 4.50
(dd, J5,4 = 9.6 Hz, J5,F = 4.8 Hz, 1H, H-5), 5.01 (ddd, J4,3 = 10.0 Hz, J4,F = 49.6 Hz,
1H, H-4), 5.19 (dd, J2,1 = 4.0 Hz, J2,3 = 9.6 Hz, 1H, H-2), 6.11 (ddd,
J3,2 = J3,4 = 10.0 Hz, J3,F = 14.6 Hz, 1H, H-3), 6.62 (d, J1,2 = 3.6 Hz, 1H, H-1),
ride and phosphoric acid moiety was
a (Scheme 2).
Deprotection of the benzyl groups in compound 2 by hydroge-
nation over Pd–C provided 14 in very high yield. Coupling of 14
with UMP-morpholidate in the presence of 1H-tetrazole in DMF–
pyridine (3:1)14 followed by deprotection of the benzoyl groups
and the methyl ester using 3 M NaOH afforded the target com-
pound 115 in 42% yield over two steps after isolation and purifica-
tion by reverse-phase column HPLC and gel-filtration column HPLC
(Scheme 3).
7.35–8.01 (m, 10H, Ph), 8.87 (s, 1H, NH). 13C NMR (100 MHz, CDCl3)
d
(ppm) = 52.5, 69.4, 71.6 (d, J = 18.0 Hz), 72.3 (d, J = 17.7 Hz), 86.3 (d, J = 17.7 Hz,
C-4), 90.1, 92.3, 159.7, 164.7, 164.9, 167.5. MALDITOF-MS: calcd for
C23H19Cl3FNO8: 561.02; found: 584.34 [M+Na]+. Compound 4: ½a D25
ꢂ
+52.5 (c
1.3, CHCl3); 1H NMR (400 MHz, CDCl3)
d (ppm) = 3.21 (s, 1H), 3.85 (t,
J = 10.6 Hz, 1H), 4.22 (m, 1H), 4.35 (m, 2H), 4.45 (dd, J = 4.6, 11.5 Hz, 1H),
4.58 (d, J = 12.0 Hz, 1H), 4.65 (d, J = 12.0 Hz, 1H), 4.72 (m, 2H), 4.88 (d,
J = 8.6 Hz, 1H), 5.15 (d, J = 9.0 Hz, 1H), 5.63 (t, J = 9.6 Hz, 1H), 6.90–8.0 (m, 17H).
MALDITOF-MS: calcd for C34H30Cl3NO9: 701.10; found: 724.45 [M+Na]+.
Compound 11: ½ ꢂ d
a 2D5 +20.6 (c 0.7, CHCl3); 1H NMR (400 MHz, CDCl3)
(ppm) = 3.39 (s, 3H), 3.95–3.98 (m, 2H), 4.35–4.41 (m, 2H), 4.51–4.57 (m,
2H), 4.60 (d, J = 7.8 Hz, 1H, H-10), 4.62–4.68 (m, 2H), 4.78–4.80 (m, 1H), 4.83 (d,
J = 8.0 Hz, 1H, H-1), 4.95 (d, J = 12.0 Hz, 1H), 5.04–5.10 (m, 2H), 5.34–5.36 (m,
2H), 5.58 (ddd, J = 10.0, 14.6 Hz, 1H), 6.97–8.04 (m, 27H). 13C NMR (100 MHz,
CDCl3) d (ppm) = 52.0, 58.1, 62.9, 69.8, 70.7, 71.4, 71.5 (d, J = 8.4 Hz), 71.7, 72.0,
3. Conclusions
In conclusion, we successfully accomplished the first chemical
synthesis of F-4-GlcAb(1?3)GlcNAc-UDP. During the course of
our synthesis, we have described a very efficient glycosylation
73.4 (d, J = 19.4 Hz), 77.6, 87.9 (d, J4 ,F = 185.4 Hz, C-40), 94.8, 97.9, 100.9, 153.2,
0
163.9, 164.4, 164.7, 165.3, 165.6. 19F NMR (323.6 MHz, CDCl3)
(ppm) = ꢁ122.13 (dd, JF,4 = 51.4 Hz, JF,3 = 16.4 Hz). MALDITOF-MS: calcd for
d
reaction which provides
a facile access to the desired F-4-
0
0
C55H47Cl3FNO16: 1101.19; found: 1124.51 [M+Na]+. Compound 2: ½a D25
ꢂ
+32.3 (c
GlcAb1?3 linked disaccharide with complete stereoselectivity
and high yield. We believe that this compound will serve as a novel
substrate to study the catalytic mechanism of HASs. The strategy as
described here could be extended to develop a novel assay for
these enzymes using synthetic acceptors/donors.
1.1, CHCl3); 1H NMR (400 MHz, CDCl3) d (ppm) = 1.83 (s, 3H), 3.41 (s, 3H), 3.89–
3.92 (m, 1H), 4.15–4.25 (m, 3H), 4.39–4.49 (m, 2H), 4.68–4.73 (m, 2H), 4.98–
5.11 (m, 6H), 5.71 (dd, J1,2 = 3.4 Hz, J1,P = 6.4 Hz, 1H, H-1), 5.78 (d, J = 9.2 Hz, 1H,
NHAc), 6.12 (ddd, J3 ,2 = J3 ,4 = 10.0 Hz, J3 ,F = 15.5 Hz, 1H, H-30), 6.90–8.04 (m,
30H). 13C NMR (100 MHz, CDCl3) d (ppm) = 23.2, 53.2, 56.1 (JC-2,P = 6.9 Hz, C-2),
62.1, 69.3 (JCH2Ph,P = 4.9 Hz, POCH2Ph), 69.5 (JCH2Ph,P = 4.9 Hz, POCH2Ph), 69.8,
71.7, 72.5 (CH, d, J = 8.8 Hz), 72.8, 73.8 (d, J = 19.8 Hz), 77.6, 86.9 (d,
0
0
0
0
0
J4 ,F = 186.2 Hz, C-40), 95.4 (JC-1,P = 6.1 Hz, C-1), 100.9, 163.9, 164.6, 164.7,
Acknowledgments
0
165.5, 168.6, 170.1. 19F NMR (323.6 MHz, CDCl3)
d
(ppm) = ꢁ121.32 (dd,
JF,4 = 52.2 Hz, JF,3 = 16.8 Hz). 31P NMR (202 MHz, CDCl3) d (ppm) = ꢁ1.91 (s, 1
0
0
We acknowledge grant support from DOD (W81XWH-06-1-
0013) and support, in part, by the NCI Cancer Center Support Grant
to the Roswell Park Cancer Institute (P30-CA016056). We wish to
thank Cheryl Krieger for her assistance in the preparation of this
manuscript.
P). MALDITOF-MS: calcd for C57H53FNO18P: 1089.30; found: 1112.61 [M+Na]+.
Compound 1: ½a 2D5
ꢂ
+12.5 (c 0.6, H2O); 1H NMR (400 MHz, D2O) d (ppm) = 1.93
(s, 3H), 3.51 (m, 1H), 3.62 (ddd, J3 ,2 = J3 ,4 = 9.6 Hz, J3 ,F = 15.6 Hz, 1H, H-30),
0
0
0
0
0
3.68–3.92 (m, 5H), 3.96 (dd, J5 ,4 = 9.2 Hz, J5 ,F = 2.6 Hz, 1H, H-50), 4.01 (ddd,
J2,1 = 3.6 Hz, J2,3 = 10.0 Hz, J2,P = 3.1 Hz, 1H, H-2), 4.08 (m, 1H), 4.15 (m, 1H),
0
0
0
0
0
0
0
4.16–4.18 (m, 1H), 4.23–4.26 (m, 2H), 4.35 (ddd, J4 ,3 = J4 ,5 = 9.4 Hz,
J4 ,F = 51.6 Hz, 1H, H-40), 4.51 (d, J1 ,2 = 7.9 Hz, 1H, H-10), 5.43 (dd, J1,2 = 3.2 Hz,
J1,P = 8.1 Hz, 1H, H-1), 5.82 (d, 1H), 5.85 (d, 1H), 7.85 (d, 1H). 13C NMR
0
0
0
References and notes
(100 MHz, D2O)
d (ppm) = 23.4, 57.2 (JC-2,P = 8.8 Hz, C-2), 62.8, 66.2 (d,
J = 3.8 Hz), 70.7, 70.9, 71.7, 74.5 (d, J = 8.8 Hz), 74.7, 75.8 (d, J = 19.8 Hz), 77.6,
1. (a) Williams, K. J.; Halkes, K. M.; Kamerling, J. P.; DeAngelis, P. L. J. Biol. Chem.
2006, 281, 5391; (b) Toole, B. P. Nat. Rev. Cancer 2004, 4, 528; (c) Toole, B. P.;
Wight, T. N.; Tammi, M. I. J. Biol. Chem. 2002, 277, 4593; (d) Turley, E. A.; Noble,
P. W.; Bourguignon, L. Y. J. Biol. Chem. 2002, 277, 4589; (e) DeAngelis, P. L. Cell.
Mol. Life Sci. 1999, 56, 670; (f) Hall, C. L.; Turley, E. A. J. Neurooncol. 1995, 26,
221.
81.2, 85.0 (d, J = 9.8 Hz), 89.8, 93.9 (d, J4 ,F = 185.2 Hz, C-40), 96.8 (JC-1,P = 6.0 Hz,
0
C-1), 102.3, 103.8, 141.5, 153.4, 168.1, 174.5, 175.1. 19F NMR (323.6 MHz, D2O)
d (ppm) = ꢁ122.02 (dd, JF,4 = 50.2 Hz, JF,3 = 16.2 Hz). 31P NMR (202 MHz, D2O):
d: ꢁ11.2 (d, J = 23.8 Hz), ꢁ13.2 (d, J = 23.6 Hz). MALDITOF-MS: calcd for
C23H34FN3O22P2: 785.11; found: 783.95 [MꢁH]ꢁ.
0
0