5616
C. Guo et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5613–5616
Ar
novo design. After further optimization with an integrated SBDD
O
NH2
(R)
and combinatorial library approach, the initial micromolar lead
(11) was developed into a series of potent, non-peptidic, small
molecular Pin1 inhibitors with attractive properties (21a/b). The
discovery improved our confidence in pursuing drug-like Pin1
inhibitors. However, the whole cell activity, presumably due to
poor permeability, remained to be an unsolved problem even for
this series of Pin1 inhibitors. The simplified pharmacophore and
the three Pin1 crystal structures reported herein set the stage for
other drug-like Pin-1 inhibitor designs. In the following communi-
cations, progress toward improving cell permeability of Pin1 inhib-
itors will be reported.
5 steps
NH2
BH3 THF
42%
NH
O
P
R
OH
R
OH
OH
OH
(R)
R
O
(R)
O
similar to Scheme 2
19
20
21-23
Compound
21a
R
Ar
2-naphthyl
Ki (µM)
0.008
0.006
0.032
0.057
0.078
0.089
3-F-phenyl
3-F-phenyl
3-methylphenyl
3-methylphenyl
2,3-diF-phenyl
2,3-diF-phenyl
21b
22a
22b
23a
2-benzothiophenyl
2-naphthyl
2-benzothiophenyl
2-naphthyl
23b
2-benzothiophenyl
Scheme 3.
Acknowledgment
hydrophobic interaction dominates the binding affinity for these
compounds. The channel formed by Ser-114, Arg-69 into the Trp-
73 pocket is harder to access than what we had anticipated.
An analysis of the 18b co-crystal structure revealed a small cav-
ity between to the phenyl C-3 position of the inhibitors and the
Pin1 Phe-134 residue, as shown in Figure 5. Since the cavity ap-
peared hydrophobic, analogs with small substitutions on C-3 such
as F and CH3 were synthesized and tested (Scheme 3). Both analogs
21–22 bound tighter than the corresponding phenyl analogs 18a/b,
with the fluoro analogs being most active. The fluoro atom added
to C-3 position produced a dramatic boost in inhibitory activity
(21b vs 18b, 30x), corresponding to a highly efficient contribution
to binding (DDG = À2.0 kcal/mol).27 The X-ray co-crystal structure
of 22b (Fig. 6) confirmed our hypothesis. Further substitution to
the phenyl ring reduced binding affinity (23a–b).
We thank Dr. Robert Kania for his input and insightful discus-
sion while preparing this Letter.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Lu, K. P.; Hanes, S. D.; Hunter, T. Nature 1996, 380, 544.
2. Lu, K. P. Prog. Cell Cycle Res. 2000, 4, 83.
3. Winkler, K. E.; Swenson, K. I.; Kornbluth, S.; Means, A. R. Science 2000, 287,
1644.
4. Lu, K.P.; Wulf, G.; Zhou, X. Z. PCT Int. Appl. WO 2001038878, 2001.
5. Ranganathan, R.; Lu, K. P.; Hunter, T. Cell 1997, 89, 875.
6. Hennig, L.; Christner, C.; Kipping, M.; Schelbert, B.; Rucknagel, K. P.; Grabley, S.;
Kullertz, G.; Fischer, G. Biochemistry 1998, 37, 5953.
7. Lu, P. J.; Zhou, X. Z.; Shen, M.; Lu, K. P. Science 1999, 283, 1325.
8. Wildemann, D.; Erdmann, F.; Alvarez, B. H.; Stoller, G.; Zhou, X. Z.; Fanghanel,
J.; Schutkowski, M.; Lu, K. P.; Fischer, G. J. Med. Chem. 2006, 49, 2147.
9. Guo, C.; Dagostino, E. F.; Dong, L.; Hou, X.; Margosiak, S. A. PCT Int. Appl. WO
2004087720, 2004.
10. Matthews, D. A.; Dagostino, E. F.; Ferre, R. A.; Gaur, S.; Guo, C.; Hou, X.;
Margosiak, S.; Mroczkowski, B.; Nakayama, G. R.; Parge, H. E.; Zhu, J. X. PCT Int.
Appl. WO 2004005315, 2004.
11. Zhang, Y.; Daum, S.; Wildemann, D.; Zhou, X. Z.; Verdecia, M. A.; Bowman, M.
E.; Lucke, C.; Hunter, T.; Lu, K. P.; Fischer, G.; Noel, J. P. ACS Chem. Biol. 2007, 2,
320.
Compound 21b, a 3-fluorophenylalanine derivative, is one of
the most potent inhibitors known with
a phosphate group
(Ki = 6 nM). Although it is an efficient ligand with desirable proper-
ties (LE = 0.43, MW = 409, Clog P = 3.1, Clog D = À0.76), compound
21b was inactive in whole cell assay, likely due to the poor perme-
ability conferred by the polar phosphate group.
In conclusion, a series of potent, none peptide-based Pin1 inhib-
itors was designed without a viable lead from HTS. We discovered
the aminophenylpropanol core by utilizing structure-based de
12. Wang, X. J.; Xu, B.; Mullins, A. B.; Neiler, F. K.; Etzkorn, F. A. J. Am. Chem. Soc.
2004, 126, 15533.
13. Siegrist, R.; Zurcher, M.; Baumgartner, C.; Seiler, P.; Diederich, F.; Daum, S.;
Fischer, G.; Klein, C.; Dangl, M.; Schwaiger, M. Helv. Chim. Acta 2007, 90, 217.
14. Do, Q.-Q. T.; Guo, C.; Humphries, P. S.; Marakovits, J. T.; Dong, L.; Hou, X.;
Johnson, M. C. PCT Int. Appl. WO 2006040646, 2006.
15. Bayer, E.; Thutewohl, M.; Christner, C.; Tradler, T.; Osterkamp, F.; Waldmann,
H.; Bayer, P. Chem. Commun. (Camb) 2005, 516.
16. Daum, S.; Erdmann, F.; Fischer, G.; Feaux de Lacroix, B.; Hessamian-Alinejad,
A.; Houben, S.; Frank, W.; Braun, M. Angew. Chem., Int. Ed. 2006, 45, 7454.
17. Bao, L.; Kimzey, A. PCT Int. Appl. WO 2004093803, 2004.
18. See Supplementary data.
19. Zhu, J. X.; Dagostino, E.; Rejto, P. A.; Mroczkowski, B.; Murray, B. Biochem.
Biophys. Res. Commun. 2007, 359, 529.
20. Daum, S.; Fanghanel, J.; Wildemann, D.; Schiene-Fischer, C. Biochemistry 2006,
45, 12125.
21. Namanja, A. T.; Peng, T.; Zintsmaster, J. S.; Elson, A. C.; Shakour, M. G.; Peng, J.
W. Structure 2007, 15, 313. In our NMR studies (unpublished), we observed
ligand-protein interaction similar to this report.
22. Babine, R. E. V. J. E.; Gold, B. G. Exp. Opin. Ther. Patents 2005, 15, 555.
23. Holt, D. A.; Luengo, J. I.; Yamashita, D. S.; Oh, H. J.; Konialian, A. L.; Yen, H. K.;
Rozamus, L. W.; Brandt, M.; Bossard, M. J. J. Am. Chem. Soc. 1993, 115, 9925.
24. For flexible docking method used herein, see: Gehlhaar, D. K.; Verkhivker, G.
M.; Rejto, P. A.; Sherman, C. J.; Fogel, D. B.; Fogel, L. J.; Freer, S. T. Chem. Biol.
1995, 2, 317.
25. Varghese, J. N.; Smith, P. W.; Sollis, S. L.; Blick, T. J.; Sahasrabudhe, A.; McKimm-
Breschkin, J. L.; Colman, P. M. Structure 1998, 6, 735.
26. Hopkins, A. L.; Groom, C. R.; Alex, A. Drug Discovery Today 2004, 9, 430.
27. G = ÀRT ln(Ka) = RT ln(Kd) ꢁ 1.36 log (Ki) [kcal/mol], at T = 298 K. And
Figure 6. X-ray co-crystal structure of 22b and Pin1 K7782Q construct (distance in
Å, PDB ID: 3IKG).
DDG =
D
G(21b) À
DG(18b).