Triphenylphosphine-Mediated Synthesis
3405
3. Tanaka, H.; Sakai, I.; Sasai, K.; Sato, T.; Ota, T. Long-range interaction
between radical center and b-hydrogens of penultimate monomer unit in
ESR of model propagating acrylate radicals. J. Polym. Sci., Part C: Polym.
Lett. 1988, 26, 11–15.
4. Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972; Chem. Abstr.
1972, 77, 34174.
5. For reviews of the Baylis–Hillman reaction, see (a) Drewes, S. E.; Roos, G.
H. P. Synthetic potential of the tertiary-amine-catalyzed reaction of activated
vinyl carbanions with aldehydes. Tetrahedron 1988, 44, 4653–4670; (b)
Basavaiah, D.; Rao, P. D.; Hyma, R. S. The Baylis–Hillman reaction: A
novel carbon–carbon bond-forming reaction. Tetrahedron 1996, 52, 8001–
8062; (c) Ciganek, E. The catalyzed a-hydroxyalkylation and a-aminoalkyla-
tion of activated olefins (the Morita–Baylis–Hillman reaction). Org. React.
1997, 51, 201–350; (d) Langer, P. New strategies for the development of an
asymmetric version of the Baylis–Hillman reaction. Angew. Chem. Int. Ed.
2000, 39, 3049–3052; (e) Kim, J. N.; Lee, K. Y. Synthesis of cyclic compounds
from the Baylis–Hillman adducts. Curr. Org. Chem. 2002, 6, 627–645; (f)
Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Recent advances in the
Baylis–Hillman reaction and applications. Chem. Rev. 2003, 103, 811–891;
(g) Kataoka, T.; Kinoshita, H. Chalcogenide–Lewis acid–mediated tandem
Michael aldol reaction––An alternative to the Morita–Baylis–Hillman reac-
tion and a new development. Eur. J. Org. Chem. 2005, 45–58; (h) Basavaiah,
D.; Rao, K. V.; Reddy, R. J. The Baylis–Hillman reaction: A novel source of
attraction, opportunities, and challenges in synthetic chemistry. Chem. Soc.
Rev., 2007, 36, 1581–1588; (i) Singh, V.; Batra, S. Advances in the Baylis–
Hillman reaction-assisted synthesis of cyclic frameworks. Tetrahedron 2008,
64, 4511–4574.
´
6. Foucaud, A.; Le Rouille, E. One-pot preparation of 1-acyl-1-methoxycarbo-
nyloxiranes and 1-acyl-1-cyanooxiranes from methyl 3-hydroxy-2-methyle-
nealkanoates or 3-aryl-3-hydroxy-2-methylenepropanenitriles. Synthesis
1990, 787–789.
7. Wittig, G.; Haag, W. Triphenylphosphinemethylenes as olefin-forming
reagents, II. Chem. Ber. 1955, 88, 1654–1666.
8. (a) Mal, D.; Bandyopadhyay, M.; Ghorai, S. K.; Datta, K. Total synthesis of
coriandrin and 7-demethylcoriandrin via a new synthesis of isocoumarins.
Tetrahedron Lett. 2000, 41, 3677–3680; (b) Houwen-Claassen, A. A. M.;
Klunder, A. J. H.; Zwanenburg, B. Synthesis of cyclopentadienone epoxides
from 10-oxatricyclodecadienones. Tetrahedron 1989, 45, 7134–7148.
9. Koelsch, C. F.; Le Claire, C. D. The action of acids on 2,3-diphenyl-2,3-
epoxyindanone. J. Am. Chem. Soc. 1943, 65, 754–755.
10. (a) Cai, J.; Zhou, Z.; Zhao, G.; Tang, C. Dramatic rate acceleration of
the Baylis–Hillman reaction in homogeneous medium in the presence of
water. Org. Lett. 2002, 4, 4723–4725; (b) Basavaiah, D.; Bhavani, A. K.
D.; Pandiaraju, S.; Sarma, P. K. S. Baylis–Hillman reaction: Magnesium
bromide as a stereoselective reagent for the synthesis of [E]- and [Z]-allyl
bromides. Synlett 1995, 243–244.