10.1002/anie.202103269
Angewandte Chemie International Edition
RESEARCH ARTICLE
L. Racicot, D. Panagopoulos, S. H. Liang, M. A. Ciufolini, Angew. Chem.
Int. Ed. 2014, 53, 9637–9639.; Angew. Chem. 2014, 126, 9791–9793. e)
M. G. Suero, E. D. Bayle, B. S. L. Collins, M. J. Gaunt, J. Am. Chem. Soc.
2013, 135, 5332–5335.
service of ETH Zürich for assistance. We thank Marius Lutz and
Miguel Rivero Crespo for assistance with the kinetic studies and
our group for critical proofreading of the manuscript.
[19] a) L. J. Gooßen, N. Rodríguez, K. Gooßen, Angew. Chem. Int. Ed. 2008,
47, 3100–3120.; Angew. Chem. 2008, 120, 3144–3164. b) T. Qin, J.
Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura, B. D. Maxwell,
M. D. Eastgate, P. S. Baran, Science 2016, 352, 801–805. c) A. Noble,
S. J. McCarver, D. W. C. Macmillan, J. Am. Chem. Soc. 2015, 137, 624–
627.
Keywords: iodination • palladium • shuttle catalysis • reaction
mechanism • ligand non-innocence
[1]
[2]
G. W. Gribble, Acc. Chem. Res. 1998, 31, 141–152.
a) M. Hernandes, S. M. Cavalcanti, D. R. Moreira, W. de Azevedo Junior,
A. C. Leite, Curr. Drug Targets 2010, 11, 303–314. b) T. Kosjek, E. Heath,
Top Heterocycl Chem 2011; 27, 219–246.
[20] Selected reviews and reports on decarbonylation: a) Q. Zhao, M. Szostak,
ChemSusChem 2019, 12, 2983–2987. b) Z. Wang, X. Wang, Y.
Nishihara, Chem. – Asian J. 2020, 15, 1234–1247. c) L. Guo, M. Rueping,
Chem. – Eur. J. 2018, 24, 7794–7809. d) H. Lu, T. Y. Yu, P. F. Xu, H.
Wei, Chem. Rev. 2021, 121, 365–411. e) K. Amaike, K. Muto, J.
Yamaguchi, K. Itami, J. Am. Chem. Soc. 2012, 134, 13573–13576. f) L.
J. Gooßen, J. Paetzold, Adv. Synth. Catal. 2004, 346, 1665–1668. g) T.
Zhou, P. P. Xie, C. L. Ji, X. Hong, M. Szostak, M. Org. Lett. 2020, 22,
6434–6440. h) C. A. Malapit, J. R. Bour, C. E. Brigham, M. S. Sanford,
Nature 2018, 563, 100–104. i) N. A. Weires, E. L. Baker, N. K. Garg, Nat.
Chem. 2016, 8, 75–79. j) G. Meng, M. Szostak, M. Angew. Chem. Int.
Ed. 2015, 54, 14518–14522.; Angew. Chem. 2015, 127, 14726–14730.
k) T. Sugihara, T. Satoh, M. Miura, M. Nomura, Angew. Chem. Int. Ed.
2003, 42, 4672–4674.; Angew. Chem. 2003, 115, 4820–4822. l) L. J.
Gooßen, J. Paetzold, Angew. Chem. Int. Ed. 2002, 41, 1237–1241.;
Angew. Chem. 2002, 114, 1285–1289. m) F. Pan, G. B. Boursalian, T.
Ritter, Angew. Chem. Int. Ed. 2018, 57, 16871–16876.; Angew. Chem.
2018, 130, 17113–17118. n) S. T. Keaveney, F. Schoenebeck, Angew.
Chem. Int. Ed. 2018, 57, 4073–4077.; Angew. Chem. 2018, 130, 4137–
4141.
[3]
P. Jeschke, W. Krämer, U. Schirmer, M. Witschel, Modern Methods in
Crop Protection Research, Wiley-VCH Verlag GmbH & Co. KGaA:
Weinheim, Germany, 2012.
[4]
[5]
M. L. Tang, Z. Bao, Chem. Mater. 2011, 23, 446–455.
T. M. Beale, M. G. Chudzinski, M. G. Sarwar, M. S. Taylor, Chem. Soc.
Rev. 2013, 42, 1667–1680.
[6]
[7]
[8]
D. A. Petrone, J. Ye, M. Lautens, Chem. Rev. 2016, 116, 8003–8104.
W. F. Bailey, J. J. Patricia, J. Organomet. Chem. 1988, 352, 1–46.
F. Terrier, F. Modern Nucleophilic Aromatic Substitution, Wiley: Hoboken,
2013.
[9]
a) Y. Imazaki, E. Shirakawa, R. Ueno, T. Hayashi, J. Am. Chem. Soc.
2012, 134, 14760–14763. b) E. Shirakawa, Y. Imazaki, T. Hayashi,
Chem. Commun. 2009, 5088–5090.
[10] a) J. Blum, H. Rosenman, E. D. Bergmann, J. Org. Chem. 1968, 33,
1928–1930. b) J. Blum, E. Oppenheimer, E. D. Bergmann, J. Am. Chem.
Soc. 1967, 89, 2338–2341. c) J. Blum, Tetrahedron Lett. 1966, 7, 1605–
1608.
[11] a) J. L. Hofstra, K. E. Poremba, A. M. Shimozono, S. E. Reisman, Angew.
Chem. Int. Ed. 2019, 58, 14901–14905.; Angew. Chem. 2019, 131,
15043–15047. b) T. Takahashi, D. Kuroda, T. Kuwano, Y. Yoshida, T.
Kurahashi, S. Matsubara, Chem. Commun. 2018, 54, 12750–12753. c)
A. A. Cant, R. Bhalla, S. L. Pimlott, A. Sutherland, Chem. Commun. 2012,
48, 3993–3995. d) S. H. Yang, C. S. Li, C. H. Cheng, J. Org. Chem. 1987,
52, 691–694. e) T. T. Tsou, J. K. Kochi, J. Org. Chem. 1980, 45, 1930–
1937. f) A. D. Marchese, T. Adrianov, M. Lautens, Angew. Chem. Int. Ed.
2021, DOI: 10.1002/anie.202101324.; Angew. Chem. 2021, DOI:
10.1002/ange.202101324.
[21] Selected reviews and reports on decarboxylation: a) N. Rodríguez, L. J.
Goossen, Chem. Soc. Rev. 2011, 40, 5030–5048. b) J. Cornella, I.
Larrosa, Synthesis 2012, 44, 653–676. c) J. T. Edwards, R. R. Merchant,
K. S. McClymont, K. W. Knouse, T. Qin, L. R. Malins, B. Vokits, S. A.
Shaw, D. H. Bao, F.-L. Wei, T. Zhou, M. D. Eastgate, P. S. Baran, Nature
2017, 545, 213–218. d) Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A.
G. Doyle, D. W. C. MacMillan, Science 2014, 345, 437–440. e) L. J.
Gooßen, G. Deng, L. M. Levy, Science 2006, 313, 662–664. f) J. Cornella,
P. Lu, I. Larrosa, Org. Lett. 2009, 11, 5506–5509.
[22] a) A. Borodine, Justus Liebigs Ann. Chem. 1861, 119, 121–123. b) H.
Hunsdiecker, C. Hunsdiecker, Berichte der Dtsch. Chem. Gesellschaft
1942, 75, 291–297. c) R. G. Johnson, R. K. Ingham, Chem. Rev. 1956,
56, 219–269.
[12] a) A. Klapars, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 14844–
14845. b) X. Feng, Y. Qu, Y. Han, X. Yu, M. Bao, Y. Yamamoto, Chem.
Commun. 2012, 48, 9468–9470. c) X. Jin, R. P. Davies, Catal. Sci.
Technol. 2017, 7, 2110–2117. d) W. Cao, S.-L. Niu, L. Shuai, Q. Xiao,
Chem. Commun. 2020, 56, 972–975.
[23] a) A. Varenikov, E. Shapiro, M. Gandelman, Chem. Rev. 2021, 121, 412–
484. b) T. Patra, S. Mukherjee, J. Ma, F. Strieth‐Kalthoff, F. Glorius,
Angew. Chem. Int. Ed. 2019, 58, 10514–10520.; Angew. Chem. 2019,
131, 10624–10630. c) Z. Fu, Z. Li, Y. Song, R. Yang, Y. Liu, H. Cai, J.
Org. Chem. 2016, 81, 2794–2803. d) J. Cornella, M. Rosillo-Lopez, I.
Larrosa, Adv. Synth. Catal. 2011, 353, 1359–1366. e) M. Jiang, H. Yang,
Y. Jin, L. Ou, H. Fu, Synlett 2018, 29, 1572–1577. f) Z. Fu, Y. Jiang, L.
Jiang, Z. Li, S. Guo, H. Cai, Tetrahedron Lett. 2018, 59, 4458–4461. g)
Synlett 2014, 25, 2508–2512. h) D. H. R. Barton, B. Lacher, S. Z. Zard,
Tetrahedron 1987, 43, 4321–4328.
[13] W. Liu, X. Yang, Y. Gao, C. J. Li, J. Am. Chem. Soc. 2017, 139, 8621–
8627.
[14] a) Y. H. Lee, B. Morandi, Angew. Chem. Int. Ed. 2019, 58, 6444–6448.;
Angew. Chem. 2019, 131, 6510–6515. b) S. G. Newman, M. Lautens, M.
J. Am. Chem. Soc. 2010, 132, 11416–11417.
[15] a) A. H. Roy, J. F. Hartwig, J. Am. Chem. Soc. 2001, 123, 1232–1233.
b) A. H. Roy, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 13944–13945.
c) A. H. Roy, J. F. Hartwig, Organometallics 2004, 23, 1533–1541.
[16] a) D. J. Jones, M. Lautens, G. P. McGlacken, Nat. Catal. 2019, 2, 843–
851. b) X. Shen, A. M. Hyde, S. L. Buchwald, J. Am. Chem. Soc. 2010,
132, 14076–14078. c) J. Pan, X. Wang, Y. Zhang, S. L. Buchwald, Org.
Lett. 2011, 13, 4974–4976. d) C. A. Malapit, N. Ichiishi, M. S. Sanford,
Org. Lett. 2017, 19, 4142–4145. e) J. W. Verbicky, B. A. Dellacoletta, L.
Williams, Tetrahedron Lett. 1982, 23, 371–372. f) C. M. Lee, P. J. C.
Menzies, D. A. Petrone, M. Lautens, Angew. Chem. Int. Ed. 2015, 54,
254–257.; Angew. Chem. 2015, 127, 256–259.
[24] G. J. P. Perry, J. M. Quibell, A. Panigrahi, I. Larrosa, J. Am. Chem. Soc.
2017, 139, 11527–11536.
[25] a) Y. H. Lee, B. Morandi, Nat. Chem. 2018, 10, 1016–1022. b) For an
independent report on the synthesis of acid chlorides from aryl iodides,
see: M. De La Higuera Macias, B. A. Arndtsen, J. Am. Chem. Soc. 2018,
140, 10140–10144.
[26] Y. H. Lee, B. Morandi, Coord. Chem. Rev. 2019, 386, 96–118.
[27] a) P. Boehm, S. Roediger, A. Bismuto, B. Morandi, Angew. Chem. Int.
Ed. 2020, 59, 17887–17896.; Angew. Chem. 2020, 132, 18043–18052.
b) X. Fang, B. Cacherat, B. Morandi, Nat. Chem. 2017, 9, 1105–1109.
[28] V. V. Grushin, W. J. Marshall, J. Am. Chem. Soc. 2006, 128, 12644–
12645.
[17] a) P. Fitton, E. A. Rick, J. Organomet. Chem. 1971, 28, 287–291. b) V.
V. Grushin, H. Alper, Chem. Rev. 1994, 94, 1047–1062. c) F. Barrios-
Landeros, B. P. Carrow, J. F. Hartwig, J. Am. Chem. Soc. 2009, 131,
8141–8154.
[18] a) T. Wirth, Hypervalent Iodine Chemistry: Modern Developments in
Organic Synthesis; Topics in Current Chemistry Series 224; Springer:
Berlin-Tokyo, 2003. b) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016,
116, 3328–3435. c) T. Wirth, Angew. Chem. Int. Ed. 2005, 44, 3656–
3665.; Angew. Chem. 2005, 117, 3722–3731. d) T. Kasahara, Y. J. Jang,
[29] P. M. Garcia-Barrantes, K. McGowan, S. W. Ingram, C. W. Lindsley,
Tetrahedron Lett. 2017, 58, 898–901.
[30] E. Panova, G. Jones, Drug Safety. 2015, 38, 245–252.
6
This article is protected by copyright. All rights reserved.