54
Y. Ünver et al. / Journal of Molecular Structure 936 (2009) 46–55
[17] (a) D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, J. Phys. Chem. B
103 (1999) 4164;
molecular geometry of the triazole ring is in agreement values with
the structures 3-[(5-Methyl-2-oxo-1,3-benzoxazol-3-yl)methyl]-
4-phenyl-1H-1,2,4-triazole-5(4H)-thione [59] and 4-Allyl-3-[(5-
methyl-2-oxo-1,3-benzoxazol-3-yl)methyl]-1H-1,2,4-triazole-
5(4H)-thione [60].
(b) D.R. MacFarlane, J. Huang, M. Forsyth, Nature 402 (1999) 792.
[18] R. Hagiwara, T. Hirashige, T. Tsuda, Y. Ito, J. Fluorine Chem. 99 (1999) 1.
[19] H. Matsumoto, T. Matsuda, Y. Miyazaki, Chem. Lett. (2000) 1430.
[20] (a) H. Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, Y.
Miyazaki, Chem. Lett. (2000) 922;
The molecular structure is stabilized by NAH. . .N and CAH. . .O
type intermolecular hydrogen bonds. In the compound 3c, the
adjacent O atom of the triazole ring acts as a hydrogen bond accep-
tor involving an intermolecular interaction with atom C7 and atom
C10, like as the molecules 3a and 3b. Namely, C7-H7A. . .O3 (sym-
metry code: x, yÀ1, z), C10AH10B. . .O3 (symmetry code: Àx + 1,
Ày + 2, Àz + 1). The latter interaction link the molecules into one-
dimensional chain along (1 0 0) (Fig. 8), these interactions are,
N3AH33. . .N6 (symmetry code: xÀ1, y + 1, z), C2AH2. . .O2A (sym-
metry code: Àx + 2, yÀ1/2, Àz + 3/2) and C15AH15. . .O1A (symme-
try code: Àx + 2, y + 1/2, Àz + 3/2). The details of the hydrogen
(b) H. Matsumoto, H. Kageyama, Y. Miyazaki, Chem. Lett. (2001) 182.
[21] H. Ohno, K. Ito, Chem. Lett. (1998) 751.
[22] M. Yoshizawa, H. Ohno, Chem. Lett. (1999) 889.
[23] S.I. Lall, D. Mancheno, S. Castro, V. Behaj, J.I. Cohen, R. Engel, Chem. Commun.
(2000) 2413.
[24] J.H. Davis Jr., K.J. Forrester, T. Merrigan, Tetrahedron Lett. 39 (1998) 55.
[25] A.S. Larsen, J.D. Holbrey, F.S. Tham, C.A. Reed, J. Am. Chem. Soc. 122 (2000)
7264.
[26] For reviews, see: (a) J.S. Wilkes, Green Chem. 4 (2002) 73;
(b) R. Sheldon, Green Chem. 4 (2002) 73;
(c) P. Wasserscheid, W.K. Angew, Chem, Int. Ed. 39 (2000) 3772;
(d) Y. Chauvin, .H. Olivier, Chemtech (1995) 26.
[27] V.R. Koch, C. Nanjundiah, G.B. Appetecchi, B. Scrosati, J. Electrochem. Soc.
(1995) L116.
[28] A.B. McEwen, H.L. Ngo, K. LeCompte, J.L. Goldman, J. Electrochem. Soc. 146
(1999) 1687.
bonds are shown in the Table 4. There is also weak p–p interaction
between the Cg2 ring in a neighboring molecule is 3.97 Å at (2Àx,
[29] A. Noda, M. Watanabe, Electrochim. Acta 45 (2000) 1265.
[30] (a) N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhoˆ te, H. Pettersson, A.
Azam, M. Gratzel, J. Electrochem. Soc. 143 (1996) 3099;;
(b) H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito, Y. Miyazaki, Chem.
Lett. (2001) 26.
2Ày, Àz) [Cg2 is the ring centroid of the N5AC15 ring].
5. Conclusions
[31] M. Doyle, S.K. Choi, G. Proulx, J. Electrochem. Soc. 147 (2000) 34.
[32] T. Welton, Chem. Rev. (1999) 2071.
In conclusion, new triazole-3-one derivatives containing an imi-
dazol ring, which are fundamental compounds in the preparation
of ionic liquids and used as a antimicrobial substance, have been
prepared and characterized by combination of X-ray crystallogra-
phy, elemental analysis, 1H- and 13C NMR spectra, mass spectra,
IR and UV–vis spectra, and theoretical methods. In the compound
3a, all the ring systems are completely planar, while the complete
molecule is non-planar. In addition, while oxygen, nitrogen (2, 3
and 5) atoms are lie out of rings, especially aliphatic C(23) atom
is twisted into cavity of molecule. We have, however attempted
to assign the calculated frequencies to the corresponding observed
values based on the concept of group frequencies and intensity
profiles. The compound 3b, C17H21N5O3, is not planar. In the com-
pound 3c, C15H16N6O3, the ring systems are almost planar whereas
the whole molecule is not planar.
[33] (a) J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers,
Chem. Commun. (1998) 1765;
(b) A.E. Visser, R.P. Swatloski, W.M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki,
J.H. Davis Jr., R.D. Rogers, Chem. Commun. (2001) 135.
[34] V.V. Nomboodiri, R.S. Varma, Org. Lett. (2002) 3161.
[35] Recent examples: (a) Y. Gu, F. Shi, Y. Deng, J. Org. Chem. 69 (2004) 391;
(b) F. Shi, H. Xion, Y. Gu, S. Guo, Y. Deng, Chem. Commun. (2003) 1054;
(c) E.J. Kim, S.Y. Ko, C.E. Song, Helv. Chim. Acta 86 (2003) 894;
(d) J.N. Rosa, C.A.M. Afonso, A.G. Santos, Tetrahedron 57 (2001) 4189;
(e) T. Tsuchimoto, T. Maeda, E. Shirakawa, Y. Kawakami, Chem. Commun.
(2000) 1573;
(f) C.E. Song, W.H. Shim, E.J. Roh, S.-G. Lee, J.H. Choi, Chem. Commun. 2 (2001)
1122.
[36] R. Hagiwara, Y.J. Ito, J. Fluorine Chem. 105 (2000) 221.
[37] J.D. Holbrey, K.R. Seddon, J. Chem. Soc., Dalton Trans. (1999) 2133.
[38] Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe &
Cie, Darmstadt, Germany.
[39] G.M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Germany,
1997.
[40] Burnett M.N., Johnson C.K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge
National Laboratory, Tennessee, USA.
[41] L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837.
[42] M. Nardelli, J. Appl. Cryst. 28 (1995) 659.
Acknowledgements
[43] A. Ikizler, K. Sancak, Rov. Roumaine Chim. 43 (1998) 133.
[44] R. Milcent, C. Redeuilh, J. Heterocycl. Chem. 16 (1979) 403.
[45] G. Laus, V. Kahlenberg, D.M. Többens, R.K.R. Jetti, U.J. Griesser, J. Schütz, E.
Kristeva, K. Wurst, H. Schottenberger, Crystal Growth & Desing 6 (2006) 404.
[46] C. Aleman, J. Puiggali, J. Org. Chem. 64 (1999) 351.
[47] M. Er, K. Sancak, I. Deg˘irmenciog˘lu, K. Serbest, J. Mol. Struct. 882 (2008) 35–46.
[48] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Akajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.
Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O.
Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, GAUSSIAN-03, Revision C.02, Gaussian, Inc., Pittsburgh, PA, (2003).
[49] K. Sancak, M. Er, Y. Ünver, M. Yildirim, I. Degirmencioglu, K. Serbest, Trans.
Met. Chem. 32 (2007) 16.
[50] J.B. Foresman, E. Frisch, Exploring Chemistry with Electronic Structure
Methods: A Guide to Using Gaussian, Gaussian, Pittsburg, PA, 1993.
[51] A.P. Scott, L. Radom, J. Phys. Chem. 100 (41) (1996) 16502.
[52] G.W. Burton, T. Doba, E.J. Gabe, L. Hughes, F.L. Lee, L. Prasad, K.U. Ingold, J. Am.
Chem. Soc. 107 (1985) 7053.
[53] G.W. Burton, Y. Le Page, E.J. Gabe, K.U. Ingold, J. Am. Chem. Soc. 102 (1980)
7791.
[54] G.W. Burton, K.U. Ingold, J. Am. Chem. Soc. 103 (1981) 6472.
[55] M. Silverstein, G. Clayton Basseler, C. Morill, Spectrometric Identification of
Organic Compounds, Wiley, New York, 1981.
This study was supported by Grants from Karadeniz Technical
University (project No.: 2007.111.002.11) and the scientific and
technological research council (TUBITAK project No.: 107T065) of
Turkey.
References
[1] T. Tsukuda, Y. Shiratori, M. Watanabe, H. Ontsuka, K. Hattori, M. Shirai, N.
Shimma, Bioorg. Med. Chem. Lett. 8 (1998) 1819.
_
_
[2] I. Küçükgüzel, Sß.G. Küçükgüzel, S. Rollas, G. Ötük-Sanısß, O. Özdemir, I. Bayrak,
T. Altug˘, J.P. Staples, Il Farmaco 59 (2004) 893.
[3] B. Modzelewska, J. Kalabun, Pharmazie 54 (1999) 503.
[4] B.S. Holla, K.N. Poorjary, B.S. Rao, M.K. Shivananda, Eur. J. Med. Chem. 37
(2002) 511.
[5] E. Palaska, G. Sahin, P. Kelicen, N.T. Durlu, G. Altınok, Il Farmaco 57 (2002) 101.
[6] S. Tehranchian, T. Akbarzadeh, M.R. Fazeli, H. Jamalifar, A. Shafiee, Bioorg. Med.
Chem. Lett. 15 (2005) 1023.
[7] (a) M.I. Husain, M. Amir, J. Indian Chem. Soc. 63 (1986) 317;
(b) M.I. Husain, M. Amir, Chem. Abstr. 106 (1987) 176272h.
[8] S.H.L. Chiu, S.E.W. Huskey, Drug Metabol. Dispos. 26 (1998) 838.
[9] R. Eliott, R.L. Sunley, D.A. Griffin, Chem. Abstr. 107 (1987) 134310n.
[10] P.E. Goss, K. Strasser-Weippl, Best Pract. Res. Clin. End. Met. 18 (2004) 113.
[11] J.R. Santen, Steroids 68 (2003) 559.
[12] M. Clemons, R.E. Colemon, S. Verma, Cancer Treat. Rew. 30 (2004) 325.
[13] S. Chen, Y.C. Kao, C.A. Laughton, J. Steroid Biochem. 61 (1997) 107.
[14] J.S. Wilkes, M.J. Zaworotko, J. Chem. Soc. Chem. Commun. (1992) 965.
[15] J. Fuller, R.T. Carlin, H.C. De Long, D. Haworth, J. Chem. Soc., Chem. Commun.
(1994) 299.
[16] P. Bonhote, A.-P. Dias, M. Armand, N. Papageorgiou, K. Kalyanasundaram, M.
Gratzel, Inorg. Chem. 35 (1996) 1168.
[56] H. Aslan, U. Flörke, N. Külcü, Spectrochim. Acta A 67 (2007) 936.