LETTER
Stereoselective Synthesis of syn- and anti-1,2-Aminoalcohols
2285
(2) For isolation, see: (a) Isono, K.; Asahi, K.; Suzuki, S. J. Am.
Chem. Soc. 1969, 91, 7499. For synthetic works, see:
(b) Saksena, A. K.; Lovey, R. G.; Girijavallabhan, V. M.;
Ganguly, A. K. J. Org. Chem. 1986, 51, 5024. (c) Hirama,
M.; Hioki, H.; Ito, S. Tetrahedron Lett. 1988, 29, 3125.
(d) Garner, P.; Park, J. M. J. Org. Chem. 1988, 53, 2979.
(e) Dureult, A.; Carreaux, F.; Depezay, J.-C. Tetrahedron
Lett. 1989, 30, 4527. (f) Paz, M.; Sardina, F. J. Org. Chem.
1993, 58, 6990. (g) Dondoni, A.; Franco, S.; Merchan, F. L.;
Merino, P.; Tejero, T. Tetrahedron Lett. 1993, 34, 5479.
(h) Marshall, J. A.; Seletsky, B. M.; Coan, P. S. J. Org.
Chem. 1994, 59, 5139. (i) Matsura, F.; Hamada, Y.; Shioiri,
T. Tetrahedron Lett. 1994, 35, 733. (j) Jackson, R. F.;
Palmer, N. J.; Wyther, M. J.; Clegg, W.; Elsegood, M.
J. Org. Chem. 1995, 60, 6431. (k) Kang, S. H.; Choi, H.
Chem. Commun. 1996, 1521. (l) Veeresa, G.; Datta, A.
Tetrahedron Lett. 1998, 39, 119. (m) Savage, I.; Thomas,
E. J.; Wilson, P. D. J. Chem. Soc., Perkin Trans. 1 1999,
3291. (n) Davis, F. A.; Prasad, K. R.; Carroll, P. J. J. Org.
Chem. 2002, 67, 7802. (o) Tarrade, A.; Dauban, P.; Dodd,
R. H. J. Org. Chem. 2002, 68, 9521.
(3) (a) Harris, T. M.; Harris, C. M. H.; Hill, J. E.; Ungemach,
F. S.; Broquist, H. P.; Wickwire, B. M. J. Org. Chem. 1987,
52, 3094. (b) Heitz, M.-P.; Overman, L. E. J. Org. Chem.
1989, 54, 2591.
(4) (a) Ichikawa, Y.; Ito, T.; Isobe, M. Chem. Eur. J. 2005, 11,
1949. (b) Ichikawa, Y.; Matsunaga, K.; Masuda, T.;
Kotsuki, H.; Nakano, K. Tetrahedron 2008, 64, 11313.
(5) (a) Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga,
N. J. Am. Chem. Soc. 2001, 123, 9525. For the allylic
alkylation, see: (b) Takeuchi, R.; Kashio, M. Angew. Chem.
Int. Ed. Engl. 1997, 36, 263. (c) Takeuchi, R.; Kashio, M.
J. Am. Chem. Soc. 1998, 120, 8647. For reviews, see:
(d) Takeuchi, R. Synlett 2002, 1954. (e) Takeuchi, R.;
Kezuka, S. Synthesis 2006, 3349.
(6) Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 15164.
(7) (a) Feringa, B. L. Acc. Chem. Res. 2000, 346. For a
convenient synthetic method for L1 and L2 ligands, see:
(b) Alexakis, A.; Gille, S.; Prian, F.; Rosset, S.; Ditrich, K.
Tetrahedron Lett. 2004, 45, 1449. (c) Polet, D.; Alexakis,
A. Org. Lett. 2005, 7, 1621.
(8) (a) Lipowsky, G.; Helmchen, G. Chem. Commun. 2004,
116. (b) Welter, C.; Koch, O.; Lipowsky, G.; Helmchen, G.
Chem. Commun. 2004, 896. (c) Helmchen, G. Chem.
Commun. 2004, 116. (d) Weihofen, R.; Dahnz, A.;
Tverskoy, O.; Helmchen, G. Chem. Commun. 2005, 3541.
(e) Weihofen, R.; Tverskoy, O.; Helmchen, G. Angew.
Chem. Int. Ed. 2006, 45, 5546. (f) Lee, J. H.; Shin, S.; Kang,
J.; Lee, S. J. Org. Chem. 2007, 72, 7443.
(14) Representative Experimental Procedure: A Schlenk flask
under argon was charged with [Ir(cod)Cl]2 (21 mg, 0.032
mmol) and L1 (32 mg, 0.060 mmol). THF (3.0 mL) and n-
propylamine (3.0 mL) were added, and the reaction mixture
was stirred at 50 °C for 30 min. Evaporation of the volatile
materials gave the activated catalyst as a crude yellow solid,
which was dissolved in DMF (2.0 mL) and used as catalyst
for the next reaction. Under an argon atmosphere, allylic
carbonate 6 (205 mg, 0.75 mmol) and 2,4-dimethoxyaniline
(175 mg, 1.10 mmol) were added to the solution quickly, and
the flask was sealed under argon. After standing at room
temperature for 1 d, the reaction mixture was diluted with
H2O and Et2O. The organic layer was separated and the
aqueous layer was extracted with Et2O. The combined
organic extracts were washed with H2O and brine, dried over
Na2SO4, filtered and concentrated under reduced pressure.
Purification by silica gel chromatography (Et2O–hexane,
1:10) gave an inseparable mixture of branched allylamines
10b and 11b (250 mg, 95%) and linear allylamine 12b (10
mg, 4%). The resulting branched allylamines were analyzed
by HPLC to determine the ratio to be 92:8. Branched
allylamine 10b: 1H NMR (C6D6, 400 MHz): d = 0.06 (s, 3
H), 0.13 (s, 3 H), 1.01 (s, 9 H), 1.12 (d, J = 6.5 Hz, 3 H), 3.31
(s, 3 H), 3.46 (s, 3 H), 3.63 (m, 1 H), 4.00 (dq, J = 6.5, 3.5
Hz, 1 H), 4.73 (d, J = 8.0 Hz, 1H, NH), 5.13 (ddd, J = 10.5,
2.0, 1.0 Hz, 1 H), 5.19 (ddd, J = 17.5, 2.0, 1.0 Hz, 1 H), 5.85
(ddd, J = 17.5, 10.5, 7.0 Hz, 1 H), 6.47 (dd, J = 8.5, 2.5 Hz,
1 H), 6.51 (d, J = 2.5 Hz, 1 H), 6.64 (d, J = 8.5 Hz, 1 H); 13
C
NMR (CDCl3, 100 MHz): d = –5.08, –4.16, 18.0, 20.6, 25.7,
55.3, 55.7, 62.5, 70.6, 99.1, 103.6, 111.8, 117.4, 131.5,
136.3, 148.3, 151.7.
(15) The allylic amination of 6 with an achiral iridium complex
decorated with triphenylphosphite was briefly investigated.
In this case, a 53:47 mixture of products 10b and 11b,
together with recovered starting material 6 (17%) was
isolated (77% yield based on the consumed starting material;
Scheme 7).
[Ir(cod)Cl]2 (10 mol%)
P(OPh)3 (40 mol%)
O
10b and 11b
(53:47)
MeO
OMe
OTBS
O
OMe
(1.5 equiv)
6
H2N
EtOH, 50 °C, 20 h
Scheme 7
(16) Our initial attempts to promote N-dearylation of 11a with
CAN were complicated by formation of varying amounts of
p-quinone ii (Scheme 8). See also the reference 18b.
(9) Ichikawa, Y.; Tsuboi, K.; Isobe, M. J. Chem. Soc., Perkin
Trans. 1 1994, 2791.
O
OMe
(10) Hartwig reported that solvent influences the reactivity and
enantioselectivity of enantioselective allylic amination.
Although reactions in the polar solvents, such as DMF and
EtOH were fast (100% conversion after 2 h), low ee’s were
observed (80–77% ee). As a result, THF was recommended
as the most suitable balance of rate (100% conversion after
8–10 h) and enantioselectivity (95% ee). See reference 6.
(11) (a) Kiener, C. A.; Shu, C.; Incarvito, C.; Hartwig, J. F. J. Am.
Chem. Soc. 2003, 125, 14272. (b) Leitner, A.; Shu, C.;
Hartwig, J. F. Org. Lett. 2005, 7, 1093.
(12) Shu, C.; Leitner, A.; Hartwig, J. F. Angew. Chem. Int. Ed.
2004, 43, 4797.
(13) (a) Fukuyama, T.; Frank, R. K.; Jewell, C. F. J. Am. Chem.
Soc. 1980, 102, 2122. (b) Kronenthal, D. R.; Han, C. Y.;
Taylor, M. K. J. Org. Chem. 1982, 47, 2765.
N
NH2
HN
CAN
MeCN–H2O
+
OTBS
OTBS
OTBS
i
ii
11a
Scheme 8
(17) A competitive experiment using a 1:1 mixture of p-anisidine
and 2,4-dimethoxyaniline was carried out in order to
compare reactivity. In this reaction, a 7:3 mixture of
products 10b and 10a was obtained in 86% combined yield
(Scheme 9). This indicates that 2,4-dimethoxyaniline is
approximately two times more nucleophilic than p-anisi-
dine.
Synlett 2009, No. 14, 2281–2286 © Thieme Stuttgart · New York