A. Abbotto, F. De Angelis, M. K. Nazeeruddin et al.
FULL PAPER
Park, C. Kim, Chem. Commun. 2010, 46, 1335; c) H. Choi, I.
Raabe, D. Kim, F. Teocoli, C. Kim, K. Song, J.-H. Yum, J. Ko,
Md. K. Nazeeruddin, M. Grätzel, Chem. Eur. J. 2010, 16, 1193;
d) G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang,
Chem. Commun. 2009, 2198.
leronitrile and acetonitrile. The dye-adsorbed TiO2 electrode and
counter electrode were assembled into a sealed sandwich-type cell
with a gap of a hot-melt ionomer film, Surlyn (25 μm, Du-Pont).
For stability evaluation, the TiO2 electrodes were made of an ap-
proximate 7 μm transparent layer (20 nm diameter) and approxi-
mate 5 μm scattering layer (400 nm diameter, CCIC, HPW-400).
The ionic liquid electrolyte consisted of 1,3-dimethylimidazolium-
iodide, 1-ethyl-3-methylimidazoliumiodide, 1-ethyl-3-methylimida-
zolium tetracyanoborate, iodine, N-butylbenzoimidazole, and gua-
nidinium thiocyanate (molar ratio 12:12:16:1.67:3.33:0.67).[31] The
other procedure was identical to that mentioned above. In order to
reduce scattered light from the edge of the glass electrodes of the
dyed TiO2 layer, a light shading mask was used on the DSCs, so
the active area of DSCs was fixed to 0.2 cm2. For photovoltaic
measurements of the DSCs, the irradiation source was a 450 W
xenon light (Osram XBO 450, Germany) fitted with a filter (Schott
113), the power of which was regulated to the AM 1.5 G solar
standard by using a reference Si photodiode equipped with a color-
matched filter (KG-3, Schott) in order to reduce the mismatch in
the region of 350–750 nm between the simulated light and AM
1.5 G to less than 4%. The measurement of incident photon-to-
current conversion efficiency (IPCE) was plotted as a function of
excitation wavelength by using the incident light from a 300 W xe-
non lamp (ILC Technology, USA), which was focused through a
Gemini-180 double monochromator (Jobin Yvon Ltd.). The mea-
surement settling time between applying a voltage and measuring
a current for the I-V characterization of DSCs was fixed to 40 and
200 ms for liquid and ionic liquid electrolytes, respectively.
[8]
[9]
Z. Ning, H. Tian, Chem. Commun. 2009, 5483.
A. Abbotto, N. Manfredi, C. Marinzi, F. D. Angelis, E. Mos-
coni, J.-H. Yum, Z. Xianxi, M. K. Nazeeruddin, M. Gratzel,
Energy Environ. Sci. 2009, 2, 1094.
a) S. S. Park, Y. S. Won, Y. C. Choi, J. H. Kim, Energy Fuels
2009, 23, 3732; b) C.-H. Yang, S.-H. Liao, Y.-K. Sun, Y.-Y.
Chuang, T.-L. Wang, Y.-T. Shieh, W.-C. Lin, J. Phys. Chem. C
2010, 114, 21786; c) J. A. Mikroyannidisa, P. Sureshb, M. S.
Royc, G. D. Sharmab, J. Power Sources 2010, 195, 3002.
D. Heredia, J. Natera, M. Gervaldo, L. Otero, F. Fungo, C.-Y.
Lin, K.-T. Wong, Org. Lett. 2010, 12, 12.
C. Y. Lee, C. She, N. C. Jeong, J. T. Hupp, Chem. Commun.
2010, 46, 6090.
a) D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Non-
omura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt, L. Sun, J.
Org. Chem. 2007, 72, 9550; b) W.-H. Liu, I.-C. Wu, C.-H. Lai,
C.-H. Lai, P.-T. Chou, Y.-T. Li, C.-L. Chen, Y.-Y. Hsu, Y. Chi,
Chem. Commun. 2008, 5152.
R. Li, X. Lv, D. Shi, D. Zhou, Y. Cheng, G. Zhang, P. Wang,
J. Phys. Chem. C 2009, 113, 7469.
a) S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci,
F. De Angelis, D. Di Censo, M. K. Nazeeruddin, M. Graetzel,
J. Am. Chem. Soc. 2006, 128, 16701; b) X. Jiang, T. Marinado,
E. Gabrielsson, D. P. Hagberg, L. Sun, A. Hagfeldt, J. Phys.
Chem. C 2010, 114, 2799.
D. P. Hagberg, X. Jiang, E. Gabrielsson, M. Linder, T. Marin-
ado, T. Brinck, A. Hagfeldt, L. Sun, J. Mater. Chem. 2009, 19,
7232.
Y.-J. Cheng, J. Luo, S. Hau, D. H. Bale, T.-D. Kim, Z. Shi,
D. B. Lao, N. M. Tucker, Y. Tian, L. R. Dalton, P. J. Reid,
A. K.-Y. Jen, Chem. Mater. 2007, 19, 1154.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
Supporting Information (see footnote on the first page of this arti-
cle): Absorption spectra of 4a and 5a, 1H NMR and FT-IR spectra
of TB-1 and TB-2, recombination rates of TB-1 and TB-2.
[18]
[19]
[20]
N. Zhou, L. Wang, D. W. Thompson, Y. Zhao, Org. Lett. 2008,
10, 3001.
Acknowledgments
A. J. Bard, L. R. Faulkner in Electrochemical Methods, Funda-
mentals and Application, Wiley-VCH, Hoboken, 2001.
a) M. Pastore, E. Mosconi, F. De Angelis, M. Graetzel, J. Phys.
Chem. C 2010, 114, 7205; b) M. Pastore, S. Fantacci, F. De An-
gelis, J. Phys. Chem. C 2010, 114, 22742.
D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A.
Hagfeldt, L. Sun, Chem. Commun. 2006, 21, 2245.
M. Grätzel, J. Photochem. Photobiol. A: Chem. 2004, 164, 3.
J.-H. Yum, R. Humphry-Baker, S. M. Zakeeruddin, M. K. Na-
zeeruddin, M. Grätzel, Nano Today 2010, 5, 91.
V. Shklover, Yu. E. Ovchinnikov, L. S. Braginsky, S. M.
Zakeeruddin, M. Graetzel, Chem. Mater. 1998, 10, 2533.
a) J. N. Demas, G. A. Crosby, J. Phys. Chem. 1971, 75, 991; b)
A. T. R. Williams, S. A. Winfield, J. N. Miller, Analyst 1983,
108, 1067.
A. A., F. D. A., M. P., and N. M. thank the Ministero dellЈUniver-
sità e della Ricerca (MIUR)-FIRB (Grant No. RBNE033KMA)
and the Ministero dellЈUniversità e della Ricerca (MIUR)-PRIN
(Grant No. 2008CSNZFR). F. D. A, S. F., and M. P. thank the
Fondazione Istituto Italiano di Tecnologia (IIT) Project SEED
2009 “HELYOS” for financial support. M. K. N. thanks the EU
SPI-Cooperation, Collaborative Large-scale integrating project
ORION FP7-NMP-LA-2009-229036 and the World Class Univer-
sity (WCU) program funded by the Ministry of Education, Science
and Technology (Grant No. R31-2008-000-10035-0). We thank Dr.
Davide Di Censo for his kind assistance.
[21]
[22]
[23]
[24]
[25]
[26]
[27]
R. F. Kubin, A. N. Fletcher, Chem. Phys. Lett. 1983, 99, 49.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T.
Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N.
Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P.
Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morok-
uma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzew-
ski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.
Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V.
Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B.
Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
[1] A. J. Nozik, J. Miller, Chem. Rev. 2010, 110, 6443.
[2] a) M. Graetzel, Acc. Chem. Res. 2009, 42, 1788; b) B. O’Regan,
M. Graetzel, Nature 1991, 353, 737; M. Grätzel, Nature 2001,
414, 338.
[3] M. K. Nazeeruddin, F. DeAngelis, S. Fantacci, A. Selloni, G.
Viscardi, P. Liska, S. Ito, B. Takeru, M. Gratzel, J. Am. Chem.
Soc. 2005, 127, 16835.
[4] M. K. Nazeeruddin, C. Klein, P. Liska, M. Graetzel, Coord.
Chem. Rev. 2005, 249, 1460.
[5] H. J. Snaith, Adv. Funct. Mater. 2010, 20, 13.
[6] a) Y. Ooyama, Y. Harima, Eur. J. Org. Chem. 2009, 2903–2934;
b) A. Mishra, M. Fischer, P. Bäuerle, Angew. Chem. Int. Ed.
2009, 48, 2474.
[7] a) W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F.
Wang, C. Pan, P. Wang, Chem. Mater. 2010, 22, 1915; b) H.
Im, S. Kim, C. Park, S.-H. Jang, C.-J. Kim, K. Kim, N.-G.
6204
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 6195–6205