5980
A. Gioiello et al. / Tetrahedron Letters 50 (2009) 5978–5980
7. Duncan, D. C.; Trumbo, T. A.; Almquist, C. D.; Lentz, T. A.; Beam, C. F. J.
O
Heterocycl. Chem. 1987, 24, 555–559.
Ar
R
8. Beam, C. F.; Reames, D. C.; Harris, C. E.; Dasher, I. W.; Hollinger, W. M.; Shealy,
N. L.; Sandifer, R. M.; Perkins, M.; Hauser, C. R. J. Org. Chem. 1975, 40, 514–516.
9. Persson, T.; Nielsen, J. Org. Lett. 2006, 8, 3219–3222.
10. Padwa, A.; Pearson, W. H. Synthetic Applications of 1,3-Dipolar Cycloaddition
Chemistry Toward Heterocycles and Natural Products; Wiley & Sons Ed: Hoboken,
NJ, 2003.
11. (a) Bastide, J.; El Ghandour, N.; Henri-Rousseau, O. Tetrahedron Lett. 1972, 41,
4225–4228; (b) Stephan, E.; Vo-Quang, L.; Yen, Vo Quang; Cadiot, P.
Tetrahedron Lett. 1973, 3, 245–248; (c) Geittner, J.; Huisgen, R.; Sustmann, R.
Tetrahedron Lett. 1977, 10, 881–884; (d) Albert, Padwa; Wannamaker, M. W.
Tetrahedron 1990, 46, 1145–1162; (e) Sauer, D. R.; Schneller, S. W. J. Org. Chem.
1990, 55, 5535–5538; (f) Aggarwal, V. K.; de Vicente, J.; Bonnert, R. B. J. Org.
Chem. 2003, 68, 5381–5383.
2a-f
R
Ar
DBU
CO2Et
O
-H2O
N
N
R
Ar
N
O
H
R
Ar
3a-f
CO2Et
N
N
N
N
OH
CO2Et
CO2Et
Ar
9
R= H
-H2
CO2Et
N
N
H
6
N
EDA (1)
12. (a) Maas, G.; Regitz, M.; Moll, U.; Rahm, R.; Krebs, F.; Hector, R.; Stang, P. J.;
Crittell, C. M.; Williamson, B. M. Tetrahedron 1992, 48, 3527–3540; (b) Jiang, N.;
Chao-Jun, Li Chem. Commun. 2004, 394–395; (c) Zrinski, I.; Juribasic, M.;
Eckert-Maksic, M. Heterocycles 2006, 68, 1961–1967; (d) Qi, X.; Ready, J. M.
Angew. Chem., Int. Ed. 2007, 46, 3242–3244; (e) Krishna, P. R.; Sekhar, E. R.;
Mongin, F. Tetrahedron Lett. 2008, 49, 6768–6772.
13. Gothelf, K. V.; Jorgensen, K. A. Chem. Rev. 1998, 98, 863–910.
14. Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons:
Chichester, 1976.
Scheme 2. Proposed mechanism for 5-carboxyethyl-pyrazoles formation.
Supplementary data
Supplementary data associated with this article can be found, in
15. Bihlmaier, W.; Huisgen, R.; Reissig, H.-U.; Voss, S. Tetrahedron Lett. 1979, 28,
2621–2629.
16. General procedure for the synthesis of pyrazoles: EDA (1) (10.8 mmol) and DBU
(11.5 mmol) were added to a magnetically stirred solution of the
a-methylene
References and notes
carbonyl compound 2a–f (6.75 mmol) in acetonitrile (5 ml). After the addition,
the reaction was stirred under argon atmosphere, at room temperature, since the
complete decomposition of 1 (TLC and GC analysis). The reaction mixture was
evaporated in vacuo and the residue dissolved in 1:1 mixture of aqueous
saturated sodium bicarbonate and CH2Cl2. The organic phase was separated and
the aqueous phase extracted with CH2Cl2. The combined organic phases were
washedwith water, dried (Na2SO4), filtered andconcentratedinvacuo. Thecrude
residue was submitted to flash chromatography (light petroleum–ethyl acetate).
17. The pKa values of compounds 2a, b, e were calculated using the pKa prediction
program of Jaguar module (Jaguar, version 7.0, Schrödinger, LLC, New York, NY,
1. Elguero, J.. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W.,
Scriven, E. F. V., Eds.; Pergamon: Oxford 1996; Vol. 5.
2. (a) Bauer, V. J.; Dalalian, H. P.; Fanshawe, S. R.; Safir, S. R.; Tocus, E. C.; Benedict,
A. J. Med. Chem. 1968, 11, 981–984; (b) Berger, J. C.; Iorio, L. C. Annu. Rep. Med.
Chem. 1979, 14, 22–30; (c) Gandhale, D. N.; Patil, A. S.; Awate, B. G.; Naik, L. M.
Pesticides 1982, 16, 27–28; (d) Takagi, K.; Tanaka, M.; Murakami, Y.; Morita, H.;
Aotsuka, T. Eur. J. Med. Chem.—Chim. Ther. 1986, 21, 65–69; (e) Pimerova, E. V.;
Voronina, E. V. J. Pharm. Chem. 2001, 35, 18–21; (f) Selvam, C.; Jachak, S. M.;
Thilagavathi, R.; Chakraborti, A. K. Biorg. Med. Chem. Lett. 2005, 15, 1793–1797.
3. (a) Kost, A. N. et al Adv. Heterocycl. Chem. 1966, 6, 347–429; (b) Stanovnik, B.;
Svete, J.. In Science of Synthesis; Neier, R., Ed.; Thieme: Stuttgart, 2002; Vol. 12, p
15. and references cited therein; (c) Kumar, D.; Singh, S. P. Heterocycles 2004,
63, 145–174.
*
2007). Ab initio (QM) calculations were performed using a DFT B3LYP/6-31G
geometry optimization and the mixed basis set cc-pVTZ(+) for single-point
energy calculations. The solvation free energies of the protonated and
deprotonated species were computed using gas phase geometry
approximations. The ultrafine accuracy level for the SCF convergence was
used while considering DMSO as solvent.
4. For a review of cyclization reactions of dianions in organic synthesis, see:
Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125–4149.
5. Matsumura, N.; Kunigihara, A.; Yoneda, S. Tetrahedron Lett. 1983, 24, 3239–
3242.
18. Fernandez-Fernandez, C.; Jagerovic, N.; Alkorta, I.; Maya, C. M.; Infantes, L.;
Elguero, J. ARKIVOC 2008, viii, 74–84.
19. Qi, X. Q.; Ready, J. M. Angew. Chem., Int. Ed. 2007, 46, 3242–3244.
20. Yates, P.; Mayfield, R. J. Can. J. Chem. 1977, 55, 145–152.
6. Matsumura, N.; Kunigihara, A.; Yoneda, S. Tetrahedron Lett. 1984, 25, 4529–4532.