A R T I C L E S
Tahara et al.
guest molecules or atomic clusters via so-called 2D host-guest
chemistry, resulting in the formation of multicomponent
nanostructures.6,7 These molecular networks are typically
observed by means of scanning tunneling microscopy (STM)
under ultrahigh vacuum (UHV) conditions or at the liquid-solid
interface.1
length of linear alkanes15,16 or alkyl chains of alkylated
molecules.17 More specifically, epitaxial stabilization by match-
ing of 2D lattice registry between the molecular layer and the
substrate layer is also important for the molecular arrangement.18
Obviously, solvent plays an important role too at a liquid/solid
interface. For instance, it affects the adsorption-desorption
equilibrium,19 and solvent molecules can even become part of
the molecular network (so-called coadsorption).20 In addition,
solute concentration affects network formation especially for
nanoporous systems, an aspect that has been revealed only
recently. More specifically, in the case of alkoxylated triangular
dehydrobenzo[12]annulene (DBA) derivatives, two patterns
(nonporous linear and porous honeycomb structures) appear
depending on the concentration; nonporous linear structures are
formed at high solute concentrations, whereas porous honey-
comb structures are favored upon dilution.21 The relative
abundance of both structures also depends on the alkoxy chain
length. The tendency to form porous honeycomb structures
decreases with increasing alkyl-chain length, which is supported
by semiquantitative thermodynamics modeling. A second
beautiful example of the concentration effect is the binary
mixture of trimesic acid (TMA) and 1,3,5-tris(4-carboxylphe-
nyl)benzene (BTB).22 This mixture exhibits two polymorphs
of TMA, one 2D pattern from BTB, and three patterns of
cocrystals depending on the ratios of both components and their
concentrations. A phase diagram of the six patterns was
presented based on a thermodynamic equilibrium model.
Moreover, the effect of solute concentration was also demon-
strated for the formation of a porous molecular network from
The control of molecule-molecule interactions is crucial
especially for the formation of such porous molecular networks:
typically, discrete molecular building-blocks have to be con-
nected to each other by virtue of directional intermolecular
interactions such as hydrogen bonding,8 dipolar coupling,9 metal
coordination,10 or simply based upon van der Waals interactions
between (interdigitating) alkyl chains.11-14 In addition to
molecule-molecule interactions, molecule-substrate interac-
tions are also playing a key role in determining the network
topologies. For example, it is well-documented that the molec-
ular network structure can be affected by tuning molecule-
graphite van der Waals interactions as a result of changing the
(7) (a) Furukawa, S.; Tahara, K.; De Schryver, F. C.; Van der Auweraer,
M.; Tobe, Y.; De Feyter, S. Angew. Chem., Int. Ed. 2007, 46, 2831–
2834. (b) Lei, S.; Tahara, K.; Feng, X.; Furukawa, S.; De Schryver,
F. C.; Mu¨llen, K.; Tobe, Y.; De Feyter, S. J. Am. Chem. Soc. 2008,
130, 7119–7129. (c) Tahara, K.; Lei, S.; Mo¨ssinger, D.; Kozuma, H.;
Inukai, K.; De Schryver, F. C.; Ho¨ger, S.; Tobe, Y.; De Feyer, S.
Chem. Commun. 2008, 3897–3899. (d) Tahara, K.; Lei, S.; Mamdouh,
W.; Yamaguchi, Y.; Ichikawa, T.; Uji-i, H.; Sonoda, M.; Hirose, K.;
De Schryver, F. C.; De Feyter, S.; Tobe, Y. J. Am. Chem. Soc. 2008,
130, 6666–6667.
(8) There are a number of reports about the formation of 2D molecular
networks through hydrogen bonding as connectivity. See, for
example: (a) Griessl, S.; Lackinger, M.; Edelwirth, M.; Hietschold,
M.; Heckl, W. M. Single Mol. 2002, 3, 25–31. (b) Griessl, S. J. H.;
Lackinger, M.; Jamitzky, F.; Markert, T.; Hietschold, M.; Heckl, W. M.
Langmuir 2004, 20, 9403–9407. (c) Lei, S. B.; Wang, C.; Yin, S. X.;
Wang, H. N.; Xi, F.; Liu, H. W.; Xu, B.; Wan, L. J.; Bai, C. L. J.
Phys. Chem. B 2001, 105, 10838–10841. (d) Otsuki, J.; Nagamine,
E.; Kondo, T.; Iwasaki, K.; Asakawa, M.; Miyake, K. J. Am. Chem.
Soc. 2005, 127, 10400–10405. (e) Mamdouh, W.; Kelly, R. E. A.;
Dong, M.; Kantorovich, L. N.; Besenbacher, F. J. Am. Chem. Soc.
2008, 130, 695–702.
(15) (a) Smith, D. P. E.; Ho¨rber, H.; Gerber, C.; Binning, G. Science 1989,
245, 43–45. (b) Smith, D. P. E.; Ho¨rber, J. K. H.; Binning, G.; Nejoh,
H. Nature 1990, 344, 641–644. (c) Hara, M.; Iwakabe, Y.; Tochigi,
K.; Sasabe, H.; Garito, A. F.; Yamada, A. Nature 1990, 344, 228–
230.
(16) (a) Paserba, K. R.; Gellman, A. J. J. Chem. Phys. 2001, 115, 6737–
6751. (b) Paserba, K. R.; Gellman, A. J. Phys. ReV. Lett. 2001, 86,
4338–4341. (c) Mu¨ller, T.; Flynn, G. W.; Mathauser, A. T.; Teplyakov,
A. V. Langmuir 2003, 19, 2812–2821.
(9) (a) Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko,
S. Nature 2001, 413, 619–621. (b) de Wild, M.; Berner, S.; Suzuki,
H.; Yanagi, H.; Schlettwein, D.; Ivan, S.; Baratoff, A.; Guentherodt,
H. J.; Jung, T. A. ChemPhysChem 2002, 3, 881–885. (c) Wei, Y.;
Tong, W.; Wise, C.; Wei, X.; Armbrust, K.; Zimmt, M. J. Am. Chem.
Soc. 2006, 128, 13362–13363. (d) Wei, Y.; Tong, W.; Zimmt, M. B.
J. Am. Chem. Soc. 2008, 130, 3399–3405.
(17) (a) Wu, P.; Zeng, Q.; Xu, S.; Wang, C.; Yin, S.; Bai, C. L.
ChemPhysChem 2001, 2, 750–754. (b) Charra, F.; Cousty, J. Phys.
ReV. Lett. 1998, 80, 1682–1685. (c) Askadskaya, L.; Boeffel, C.; Rabe,
J. P. Bunsenges. Phys. Chem. 1993, 97, 517–521. (d) Ito, S.; Wehmeier,
M.; Brand, J. D.; Ku¨bel, C.; Epsch, R.; Rabe, J. P.; Mu¨llen, K.
Chem.sEur. J. 2000, 6, 4327–4342. (e) Mena-Osteriz, E. AdV. Mater.
2002, 14, 609–616.
(10) (a) Lingenfelder, M. A.; Spillmann, H.; Dmitriev, A.; Stepanow, S.;
Lin, N.; Barth, J. V.; Kern, K. Chem.sEur. J. 2004, 10, 1913–1919.
(b) Stepanow, S.; Lin, N.; Payer, D.; Schilckum, U.; Klappenberger,
F.; Zoppellaro, G.; Ruben, M.; Brune, H.; Barth, J. V.; Kern, K. Angew.
Chem., Int. Ed. 2007, 46, 710–713. (c) Surin, M.; Samor`ı, P.; Jouaiti,
A.; Kyritsakas, N.; Hosseini, M. W. Angew. Chem., Int. Ed. 2007,
46, 245–249.
(18) (a) Hiller, A. C.; Ward, M. D. Phys. ReV. B 1996, 54, 14037–14051.
(b) Hooks, D. E.; Fritz, T.; Ward, M. D. AdV. Mater. 2001, 13, 227–
241.
(19) (a) Venkataraman, B.; Breen, J. J.; Flynn, G. W. J. Phys. Chem. 1995,
99, 6608–6619. (b) Li, C.-J.; Zeng, Q.-D.; Wang, C.; Wan, L.-J.; Xu,
S.-L.; Wang, C.-R.; Bai, C.-L. J. Phys. Chem. B 2003, 107, 747–750.
(c) Lackinger, M.; Griessl, S.; Heckl, W. M.; Hietschold, M.; Flynn,
G. W. Langmuir 2005, 21, 4984–4988. (d) Kampschulte, L.; Lackinger,
M.; Maier, A.-K.; Kishore, R. S. K.; Griessl, S.; Schmittel, M.; Heckl,
W. M. J. Phys. Chem. B 2006, 110, 10829–10836. (e) Shao, X.; Luo,
X.; Hu, X.; Wu, K. J. Phys. Chem. B 2006, 110, 1288–1293. (f)
Gutzler, R.; Lappe, S.; Mahata, K.; Schmittel, M.; Heckl, W. M.;
Lackinger, M. Chem. Commun. 2009, 680–682.
(11) (a) Qiu, X.; Wang, C.; Zeng, Q.; Xu, B.; Yin, S.; Wang, H.; Xu, S.;
Bai, C. J. Am. Chem. Soc. 2000, 122, 5550–5556. (b) Ble´ger, D.;
Kreher, D.; Mathevet, F.; Attias, A.-J.; Schull, G.; Huard, A.; Douillard,
L.; Fiorini-Debuischert, C.; Charra, F. Angew. Chem., Int. Ed. 2007,
46, 7404–7407. (c) Ble´ger, D.; Kreher, D.; Mathevet, F.; Attias, A.-
J.; Arfaoui, I.; Metge´, G.; Douillard, L.; Fiorini-Debuisschert, C.;
Charra, F. Angew. Chem., Int. Ed. 2008, 47, 8412–8415.
(12) (a) Furukawa, S.; Uji-i, H.; Tahara, K.; Ichikawa, T.; Sonoda, M.; De
Schryver, F. C.; Tobe, Y.; De Feyter, S. J. Am. Chem. Soc. 2006,
128, 3502–3503. (b) Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.;
Ichikawa, T.; Zhang, J.; Sonoda, M.; De Schryver, F. C.; De Feyter,
S.; Tobe, Y. J. Am. Chem. Soc. 2006, 128, 16613–16625.
(20) (a) Mamdouh, W.; Uji-i, H.; Ladislaw, J. S.; Dulcey, A. E.; Percec,
V.; De Schryver, F. C.; De Feyter, S. J. Am. Chem. Soc. 2006, 128,
317–325. (b) Nath, K. G.; Ivasenko, O.; Miwa, J. A.; Dang, H.; Wuest,
J. D.; Nanci, A.; Perepichka, D. F.; Rosei, F. J. Am. Chem. Soc. 2006,
128, 4212–4213. (c) Tahara, K.; Johnson, C. A., II; Fujita, T.; Sonoda,
M.; De Schryver, F. C.; De Feyter, S.; Haley, M. M.; Tobe, Y.
Langmuir 2007, 23, 10190–10197.
(13) (a) Foster, J. S.; Frommer, J. E. Nature 1988, 333, 542–545. (b) Spong,
J. K.; Mizes, H. A.; LaComb Jr, L. J.; Dovek, M. M.; Frommer, J. E.;
Foster, J. S. Nature 1989, 338, 137–139. (c) Mizutani, W.; Shigeno,
M.; Sakakibara, Y.; Kajimura, K.; Ono, M.; Tanishima, S.; Ohno, K.;
Toshima, N. J. Vac. Sci. Technol., A 1990, 8, 675–678.
(21) Lei, S.; Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.; Tobe,
Y.; De Feyter, S. Angew. Chem., Int. Ed. 2008, 47, 2964–2968.
(22) Kampschulte, L.; Werblowsky, T. L.; Kishore, R. S. K.; Schmittel,
M.; Heckl, W. M.; Lackinger, M. J. Am. Chem. Soc. 2008, 130, 8502–
8507.
(14) (a) Walba, D. M.; Stevens, F.; Parks, D. C.; Clark, N. A.; Wand, M. D.
Science 1995, 267, 1144–1147. (b) Parks, D. C.; Clark, N. A.; Walba,
D. M.; Beale, P. D. Phys. ReV. Lett. 1993, 70, 607–610.
9
17584 J. AM. CHEM. SOC. VOL. 131, NO. 48, 2009