2244
K. Smith et al.
LETTER
Ducki, S. Tetrahedron 2008, 64, 6329. (f) Porcs-Makkay,
M.; Komáromi, A.; Lukács, G.; Simig, G. Tetrahedron
2008, 64, 1029. (g) Castanet, A.-S.; Tilly, D.; Véron, J.-B.;
Samanta, S. S.; Ganguly, T.; Mortier, J. Tetrahedron 2008,
64, 3331. (h) Michon, C.; Murai, M.; Nakatsu, M.; Uenishi,
J.; Uemura, M. Tetrahedron 2009, 65, 752.
amount of the other diastereoisomer was formed but not
isolated.
Clearly, the procedure outlined in Scheme 2 represents a
simple, efficient, and high yielding route for substitution
of N-(2-methoxybenzyl)pivalamide (1) ortho to the meth-
oxy group. It is not clear why lithiation of 1 with t-BuLi
in THF at –78 °C gives substitution ortho to the methoxy
group while n-BuLi and s-BuLi give mixtures containing
two main substitution products, neither of which involves
lithiation ortho to this group. It could have something to
do with the way the reagents aggregate, their ability to
chelate the two substituents, or the relative bulk of the
alkyl groups, but without further information it is not easy
to decide. However, whatever the explanation, the method
has practical significance.
(5) Recent examples for substituted heterocycles: (a)Philipova,
I.; Dobrikov, G.; Krumova, K.; Kaneti, J. J. Heterocycl.
Chem. 2006, 43, 1057. (b) Robert, N.; Bonneau, A.-L.;
Hoarau, C.; Marsais, F. Org. Lett. 2006, 8, 6071.
(c) Aliyenne, A. O.; Khiari, J. E.; Kraïem, J.; Kacem, Y.;
Hassine, B. B. Tetrahedron Lett. 2006, 47, 6405.
(d) Comoy, C.; Banaszak, E.; Fort, Y. Tetrahedron 2006, 62,
6036. (e) Luisi, R.; Capriati, V.; Florio, S.; Musio, B. Org.
Lett. 2007, 9, 1263. (f) Clayden, J.; Hennecke, U. Org. Lett.
2008, 10, 3567. (g) McLaughlin, M.; Marcantonio, K.;
Chen, C.; Davies, I. W. J. Org. Chem. 2008, 73, 4309.
(h) Capriati, V.; Florio, S.; Luisi, R.; Mazzanti, A.; Musio,
B. J. Org. Chem. 2008, 73, 3197. (i) Affortunato, F.; Florio,
S.; Luisi, R.; Musio, B. J. Org. Chem. 2008, 73, 9214.
(6) Simig, G.; Schlosser, M. Tetrahedron Lett. 1988, 29, 4277.
(7) See, for example: (a) Smith, K.; El-Hiti, G. A.; Abdo, M. A.;
Abdel-Megeed, M. F. J. Chem. Soc., Perkin Trans. 1 1995,
1029. (b) Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F.;
Abdo, M. A. J. Org. Chem. 1996, 61, 647. (c) Smith, K.;
El-Hiti, G. A.; Abdel-Megeed, M. F.; Abdo, M. A. J. Org.
Chem. 1996, 61, 656. (d) Smith, K.; El-Hiti, G. A.;
In summary, N-(2-methoxybenzyl)pivalamide (1) under-
goes lithiation with t-BuLi at –78 °C, followed by treat-
ment with electrophiles, to give high yields of the
corresponding substituted products 4–8 having the sub-
stituent ortho to the methoxy group. This contrasts with
earlier results using other lithiating agents.
Acknowledgment
Pritchard, G. J.; Hamilton, A. J. Chem. Soc., Perkin Trans. 1
1999, 2299. (e) Smith, K.; El-Hiti, G. A.; Shukla, A. P.
J. Chem. Soc., Perkin Trans. 1 1999, 2305. (f) Smith, K.;
El-Hiti, G. A.; Hawes, A. C. Synthesis 2003, 2047.
(g) Smith, K.; El-Hiti, G. A.; Mahgoub, S. A. Synthesis
2003, 2345. (h) El-Hiti, G. A. Synthesis 2003, 2799.
(i) Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F. Synthesis
2004, 2121. (j) El-Hiti, G. A. Synthesis 2004, 363.
We thank Dr Benson Kariuki, X-ray crystallography service at Car-
diff School of Chemistry, and the EPSRC National Crystallography
Service for the crystal structures. A. S. Hegazy thanks Cardiff Uni-
versity for financial support.
References and Notes
(k) Smith, K.; El-Hiti, G. A.; Hegazy, A. S. Synthesis 2005,
2951. (l) Smith, K.; Barratt, M. L. J. Org. Chem. 2007, 72,
1031.
(1) (a) Clayden, J. Organolithiums: Selectivity for Synthesis,
Vol. 23; Tetrahedron Organic Chemistry Series, Pergamon:
Oxford, 2002. (b) Schlosser, M. Organometallics in
Synthesis, 2nd ed.; Wiley: Chichester, 2002.
(2) See, for example: (a) Gschwend, H. W.; Hamdan, A. J. Org.
Chem. 1975, 40, 2008. (b) Fitt, J. J.; Gschwend, H. W.
J. Org. Chem. 1976, 41, 4029. (c) Fuhrer, W.; Gschwend,
H. W. J. Org. Chem. 1979, 44, 1133. (d) Beak, P.;
Snieckus, V. Acc. Chem. Res. 1982, 15, 306. (e) Nájera, C.;
Sansano, J. M.; Yus, M. Tetrahedron 2003, 59, 9255.
(f) Schlosser, M. Angew. Chem. Int. Ed. 2005, 44, 376.
(g) Chadwick, S. T.; Ramirez, A.; Gupta, L.; Collum, D. B.
J. Am. Chem. Soc. 2007, 129, 2259.
(3) See, for example: (a) Beak, P.; Zajdel, W. J.; Reitz, D. B.
Chem. Rev. 1984, 84, 471. (b) Snieckus, V. Chem. Rev.
1990, 90, 879. (c) El-Hiti, G. A. Heterocycles 2000, 53,
1839. (d) Mongin, F.; Quéguiner, G. Tetrahedron 2001, 57,
4059. (e) Turck, A.; Plé, N.; Mongin, F.; Quéguiner, G.
Tetrahedron 2001, 57, 4489. (f) Anctil, E. J.-G.; Snieckus,
V. J. Organomet. Chem. 2002, 653, 150. (g) Smith, K.; El-
Hiti, G. A. Curr. Org. Synth. 2004, 1, 253. (h) Chinchilla,
R.; Nájera, C.; Yus, M. Chem. Rev. 2004, 104, 2667.
(i) Foubelo, F.; Yus, M. Curr. Org. Chem. 2005, 9, 459.
(j) Rathman, T. L.; Bailey, W. F. Org. Process Res. Dev.
2009, 13, 141.
(4) Recent examples for substituted benzenes: (a) Clayden, J.;
Turner, H.; Pickworth, M.; Adler, T. Org. Lett. 2005, 7,
3147. (b) Chodakowski, J.; Kliś, T.; Serwatowski, J.
Tetrahedron Lett. 2005, 46, 1963. (c) Clayden, J.; Dufour, J.
Tetrahedron Lett. 2006, 47, 6945. (d) Burgos, P. O.;
Fernández, I.; Iglesias, M. J.; García-Granda, S.; Ortiz, F. L.
Org. Lett. 2008, 10, 537. (e) Wilkinson, J. A.; Raiber, E.-A.;
(8) Analytical Data for Compound 2: Mp 170–171 °C (lit.6
168–169 °C). 1H NMR (500 MHz, DMSO-d6): d = 7.43 (t,
J = 6 Hz, exch., 1 H, NH), 7.34 (app. t, J = 8 Hz, 1 H, H-5),
7.27 (dd, J = 2, 8 Hz, 1 H, H-6), 7.19 (br d, J = 8 Hz, 1 H, H-
4), 4.47 (d, J = 6 Hz, 2 H, CH2), 3.82 (s, 3 H, OCH3), 1.05 [s,
9 H, C(CH3)3] ppm. 13C NMR (125 MHz, DMSO-d6):
d = 177.5 (s, C=O), 169.7 (s, CO2H), 158.4 (s, C-3), 134.3 (s,
C-2), 128.7 (d, C-5), 126.7 (s, C-1), 121.6 (d, C-6), 114.6 (d,
C-4), 56.5 (q, OCH3), 38.4 [s, C(CH3)3], 35.7 (t, CH2), 27.8
[q, C(CH3)3] ppm. MS (ES+): m/z (%) = 553 (34) [2 M +
Na]+, 531 (42) [2 M + H]+, 329 (32) [M + MeCNNa]+, 304
(3) [M + K]+, 266 (100) [MH]+. HRMS (ES+): m/z calcd for
C14H20NO4 [MH]+: 266.1392; found: 266.1392. FT-IR:
n
max = 3401, 2965, 1698, 1611, 1539, 1467, 1385, 1219
cm–1.
(9) Analytical Data for Compound 4: Mp 156–157 °C. 1H
NMR (500 MHz, DMSO-d6): d = 8.03 (t, J = 6 Hz, exch., 1
H, NH), 7.57 (dd, J = 2, 8 Hz, 1 H, H-6), 7.32 (dd, J = 2, 8
Hz, 1 H, H-4), 7.16 (app. t, J = 8 Hz, 1 H, H-5), 4.32 (d, J = 6
Hz, 2 H, CH2), 3.79 (s, 3 H, OCH3), 1.15 [s, 9 H, C(CH3)3]
ppm. 13C NMR (500 MHz, DMSO-d6): d = 178.1 (s, C=O),
167.8 (s, CO2H), 157.1 (s, C-2), 134.6 (s, C-3), 131.5 (d,
C-4), 129.6 (d, C-6), 126.1 (s, C-1), 123.9 (d, C-5), 62.1 (q,
OCH3), 38.6 [s, C(CH3)3], 37.3 (t, CH2), 27.9 [q, C(CH3)3]
ppm. MS (ES+): m/z (%) = 569 (12) [2 M + K]+, 553 (100)
[2 M + Na]+, 548 (32) [2 M + NH4]+, 329 (25) [M +
MeCNNa]+, 304 (27) [M + K]+, 288 (70) [M + Na]+, 266 (71)
[MH]+. HRMS (ES+): m/z calcd for C14H20NO4 [MH]+:
266.1392; found: 266.1386. FT-IR: nmax = 3377, 2972, 1698,
1610, 1540, 1427, 1368, 1247 cm–1.
Synlett 2009, No. 14, 2242–2244 © Thieme Stuttgart · New York