11068 Inorganic Chemistry, Vol. 48, No. 23, 2009
Yang et al.
heterogeneous catalysis,5 gas storage,6 and drug delivery.7
The structures of coordination polymers are dependent upon
a variety of factors such as the geometrical and electronic
properties of the metal ions used, the bulk and coordinative
abilities ofthe ligands, the ligand-to-metalstoichiometry, and
the use of different solvents, synthetic strategies, and methods
of crystal growth. In particular, variation of ligand confor-
mations often plays a key role in the self-assembly processes
to give metal-organic coordination polymers with different
structural topologies. By adjusting the shape, functionality,
flexibility, length, and symmetry of the spacers, a remarkable
range of materials containing various architectures and
functions can be prepared.1,8-11
carboxylate complexes a rich structural chemistry. In addi-
tion, the carboxylate unit can bind together with a phosphate
group or an N-containing heterocycle to give intriguing
hybrid structures.14 Thus, polycarboxylate ligands, in parti-
cular, aromatic di- and multibranched carboxylates (i.e.,
terephthalic, isophthalic, trimesic, and pyromellitic acid)
and various pyridine- and imidazole-dicarboxylates, have
been widely used in the rational design of metal-organic
coordination polymers.9-18 Recently, strategies have been
reported using combinations of appropriate N,N0-donor
bidentate ligands to introduce pillars to link well-defined
two-dimensional (2D) metal-carboxylate layers.19 In this way
the structures of a wide variety of coordination polymers can
be predicted, and the pore size and chemical functionality of
the resultant open frameworks readily controlled via a
modification of the pillars.20 One of the best-known exam-
ples is the series [M2(2,3-pyzdc)2Lpillar]n [M = Cu and Cd;
2,3-pyzdc2-=pyrazine-2,3-dicarboxylate; Lpillar=pyrazine,
4,40-bipyridine, 1,2-di(4-pyridyl)glycol, 1,4-diazabicyclo[222]-
octane, and py-NdN-py/py-CHdCH-py (py = pyridin-
4-yl)].20,21 These microporous materials incorporate pillar
ligand bridges between the neutral layers of [M2(2,3-
pyzdc)2]n. Other examples of porous pillar-layered architec-
tures are based upon binuclear paddlewheel building blocks
bridged by linear anionic dicarboxylates to form 2D square
grids further extended by various neutral N,N0-donor pillars
to give three-dimensional (3D) R-Po porous structures with
one-dimensional (1D) channels.19,22 Some of these layer-
pillared architectures display a degree of hydrogen storage
capacity.19,22a-c
Carboxylate O-donors have the ability to coordinate to
metal centers in a variety of modes, ranging from mono- or
bis-chelate fashion to μ3-η2:η, μ4-η2:η2, and μ5-η3:η3 bridging
modes.9-13 The wide variety of coordination modes of
carboxylates and their high affinity for metal ions give metal
(5) (a) Wu, C. D.; Hu, A.; Lin, W. B. J. Am. Chem. Soc. 2005, 127, 8940.
(b) Uemara, T.; Kitagawa, K.; Horike, S.; Kawamura, T.; Kitagawa, S. Chem.
Commun. 2005, 5868. (c) Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. J.
ꢁ
J. Am. Chem. Soc. 1994, 116, 1151. (d) Gomez-lor, B.; Gutierrez-Puebla, E.;
Iglesias, M.; Monge, M. A.; Ruiz-Valero, C.; Snejko, N. Inorg. Chem. 2002, 41,
2429. (e) Tanski, J. M.; Wolczanski, P. T. Inorg. Chem. 2001, 40, 2026. (f) Seo,
J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404,
982.
(6) (a) Kesanli, B.; Cui, Y.; Smith, M. R.; Bittner, E. W.; Bockrath, B. L.;
Lin, W. Angew. Chem., Int. Ed. 2005, 44, 72. (b) Panella, B.; Hirscher, M. Adv.
Mater. 2005, 17, 538. (c) Pan, L.; Liu, H. R.; Lei, X.; Huang, X.; Olson, D. H.;
Turro, N. J.; Li, J. Angew. Chem., Int. Ed. 2003, 42, 542. (d) Zhao, X.; Xiao, B.;
Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Science 2004,
306, 1012. (e) Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H.
J. Am. Chem. Soc. 2004, 126, 15394. (f) Pan, L.; Sander, M. B.; Huang, X.; Li, J.;
Smith, M.; Bittner, E.; Bockrath, B.; Johnson, J. K. J. Am. Chem. Soc. 2004, 126,
1308. (g) Yang, S.; Lin, X.; Blake, A. J.; Thomas, K. M.; Hubberstey, P.;
We report herein the use of the commercially available
4,40-(hexafluoroisopropylidene)bis(benzoic acid) (H2hfipbb)
asa tectoninthesynthesis of novelcoordination frameworks.
The hfipbb2- ligand incorporates a C(sp3) fluorinated spacer
which forces it to be bent, thus enhancing the potential
€
Champness, N. R.; Schroder, M. Chem. Commun. 2008, 6108. (h) Yan, Y.; Lin,
€
X.; Yang, S.; Blake, A. J.; Dailly, A.; Champness, N. R.; Hubberstey, P.; Schroder,
M. Chem. Commun. 2009, 1025. (i) Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.;
Brown, C. M.; Simmons, J. M.; Zoppi, M.; Walker, G. S.; Thomas, K. M.; Mays,
(14) (a) Shi, X.; Zhu, G. S.; Qiu, S. L.; Huang, K. L.; Yu, J. H.; Xu, R. R.
Angew. Chem., Int. Ed. 2004, 43, 6482. (b) Gutschke, S. O. H.; Price, D. J.;
Powell, A. K.; Wood, P. T. Angew. Chem., Int. Ed. 1999, 39, 1088. (c) Yang, W.;
Lin, X.; Jia, J.; Blake, A. J.; Wilson, C.; Hubberstey, P.; Champness, N. R.;
€
T. J.; Hubberstey, P.; Champness, N. R.; Schroder J. Am. Chem. Soc. 2009, 131,
2159. (j) Yang, S.; Lin, X.; Dailly, A.; Blake, A. J.; Champness, N. R.; Hubberstey,
€
P.; Schroder, M. Chem.;Eur. J. 2009, 15, 4829. (k) Yang, S.; Lin, X.; Blake,
€
A. J.; Walker, G. S.; Hubberstey, P.; Champness, N. R.; Schroder, M. Nat. Chem.,
€
Schroder, M. Chem. Commun. 2008, 359.
2009, 1, 487.
(15) (a) Jia, J.; Lin, X.; Blake, A. J.; Champness, N. R.; Hubberstey, P.;
(7) (a) Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.;
€
Shao, L.; Walker, G.; Wilson, C.; Schroder, M. Inorg. Chem. 2006, 45, 8838.
ꢁ
Vallet-Regı, M.; Sebban, M.; Taulelle, F.; Ferey, G. J. Am. Chem. Soc. 2008,
(b) Jia, J.; Lin, X.; Wilson, C.; Blake, A. J.; Champness, N. R.; Hubberstey, P.;
130, 6774. (b) Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.;
€
Walker, G.; Cussen, E. J.; Schroder, M. Chem. Commun. 2007, 840.
ꢁ
Ferey, G. Angew. Chem., Int. Ed. 2006, 45, 5974.
(16) Zhang, X. M.; Zheng, Y. Z.; Li, C. R.; Zhang, W. X.; Chen, X. M.
(8) (a) Kesanli, B.; Lin, W. Coord. Chem. Rev. 2003, 246, 305. (b) Kiang,
Y.-H.; Gardner, G. B.; Lee, S.; Xu, Z.; Lobkovsky, E. B. J. Am. Chem. Soc. 1999,
121, 8204.
Cryst. Growth Des. 2007, 7, 980.
(17) Huang, Y. G.; Wu, B. L.; Yuan, D. Q.; Xu, Y. Q.; Jiang, F. L.; Hong,
M. C. Inorg. Chem. 2007, 46, 1171.
(18) (a) Qing, C.; Wang, X. L.; Wang, E. B.; Su, Z. M. Inorg. Chem. 2005,
44, 7122. (b) Zhang, G. Q.; Wang, Q.; Qian, Y.; Yang, G. Q.; Ma, J. S. J. Mol.
Struct. 2006, 796, 187.
(19) (a) Chen, B. L.; Ma, S. Q.; Zapata, F.; Lobkovsky, E. B.; Yang, J.
Inorg. Chem. 2006, 45, 5718. (b) Chun, H.; Dybtsev, D. N.; Kim, H.; Kim, K.
Chem.;Eur. J. 2005, 11, 3521.
(20) (a) Li, C. J.; Hu, S.; Li, W.; Lam, C. K.; Zheng, Y. Z.; Tong, M. L.
Eur. J. Inorg. Chem. 2006, 1931. (b) Kitaura, R.; Fujimoto, K.; Noro, S. I.;
Kondo, M.; Kitagawa, S. Angew. Chem., Int. Ed. 2002, 41, 133.
(21) (a) Maji, T. K.; Uemura, K.; Chang, H. C.; Matsuda, R.; Kitagawa,
S. Angew. Chem., Int. Ed. 2004, 43, 3629. (b) Matsuda, R.; Kitaura, R.;
Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.;
Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Nature 2005, 436, 238.
(22) (a) Kitaura, R.; Iwahori, F.; Matsuda, R.; Kitagawa, S.; Kubota, Y.;
Takata, M.; Kobayashio, T. C. Inorg. Chem. 2004, 43, 6533. (b) Dybtsev,
D. N.; Chun, H.; Kim, K. Angew. Chem., Int. Ed. 2004, 43, 5033. (c) Mulfort,
K. L.; Farha, O. K.; Stern, C. L.; Sarjeant, A. A.; Hupp, J. T. J. Am. Chem. Soc.
2009, 131, 3886. (d) Ma, B. -Q.; Mulfort, K. L.; Hupp, J. T. Inorg. Chem. 2005,
44, 4912. (e) Shultz, A. M.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem.
Soc. 2009, 131, 4204. (f) Bae, Y.-S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam,
S.; Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q. Langmuir 2008, 24, 8592.
(9) (a) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999,
402, 276. (b) Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am.
Chem. Soc. 2004, 126, 5666. (c) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D.
T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
(10) (a) Furukawa, S.; Hirai, K.; Nakagawa, K.; Takashima, Y.;
Matsuda, R.; Tsuruoka, T.; Kondo, M.; Haruki, R.; Tanaka, D.; Sakamoto,
H.; Shimomura, S.; Sakata, O.; Kitagawa, S. Angew. Chem., Int. Ed. 2009,
48, 1766. (b) Ghosh, S. K.; Kaneko, W.; Kiriya, D.; Ohba, M.; Kitagawa, S.
Angew. Chem., Int. Ed. 2008, 47, 8843.
(11) (a) Cairns, A. J.; Perman, J. A.; Wojtas, L.; Kravtsov, V. C.; Alkordi,
M. H.; Eddaoudi, M.; Zaworotko, M. J. J. Am. Chem. Soc. 2008, 130, 1560.
(b) Perry, J. J.; Kravtsov, V. C.; McManus, G. J.; Zaworotko, M. J. J. Am. Chem.
Soc. 2007, 129, 10076.
(12) (a) Anokhina, E. V.; Vougo-Zanda, M.; Wang, X.; Jacobson, A. J.
J. Am. Chem. Soc. 2005, 127, 15000. (b) Pan, L.; Parker, B.; Huang, X. Y.;
David, D. H.; lee, J. Y.; Li, J. J. Am. Chem. Soc. 2006, 128, 4180.
(13) (a) Kim, J.; Chen, B.; Reineke, T. M.; Li, H.; Eddaoudi, M.; Moler,
D. B.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2001, 123, 8239.
(b) Majumder, A.; Gramlich, V.; Rosair, G. M.; Batten, S. R.; Masuda, J. D.;
El Fallah, M. S.; Ribas, J.; Sutter, J. P.; Desplanches, C.; Mitra, S. Cryst. Growth
Des. 2006, 6, 2355.