J. Li et al. / Tetrahedron Letters 50 (2009) 6502–6505
6505
12. (a) Li, J.; Li, S. Y.; Jia, X. S. Synlett 2008, 1529; (b) Li, J.; Xu, H.; Zhang, Y. M.
Tetrahedron Lett. 2005, 46, 1931; (c) Li, J.; Qian, W. X.; Zhang, Y. M. Tetrahedron
2004, 60, 5793.
13. The significance of the CAN was also verified by the blank experiments. In the
absence of CAN, no reaction took place at all.
unique spirocyclic compounds. Considering the advantages such as
readily available starting materials, simple operations as well as
the high yields, our method will potentially find its application in
organic synthesis or even in pharmaceutical industry.
14. Ceric ammonium nitrate can act as efficient catalyst for the preparation of 1,5-
benzodiazepine derivatives with substituted o-phenyleneamines and ketones:
Varala, R.; Enugala, R.; Nuvula, S.; Adapa, S. R. Synlett 2006, 1009.
Acknowledgments
15. All new compounds have been characterized by 1H NMR, 13C NMR, EA, MS and
IR spectroscopy.
We thank the National Natural Science Foundation of China
(No. 20872087) and Innovation Fund of Shanghai University for
financial support.
16. Cui, C. B.; Kakeya, H.; Osada, H. Tetrahedron 1997, 53, 59.
17. Sannigrahi, M. Tetrahedron 1999, 55, 9007.
18. Nair, V.; Balagopal, L.; Rajan, R.; Mathew, J. Acc. Chem. Res. 2004, 37, 21.
19. Typical procedure for the synthesis of substituted 3,4-dihydroquinoxalin-2-amine
4: To a solution of 1 mmol o-phenylenediamine 1, 1 mmol ketone 2, 1 mmol
isocyanide 3 in 5 mL ethanol, 5 mol % CAN was added quickly. The above
reaction mixture was stirred at room temperature until the completion (by
TLC). After usual workup, the crude product was purified by silica gel column
chromatography using EtOAc–PE (1:3) as eluent to afford the pure product 4.
Selected data: Compound 4f: yellow solid, mp: 59–61 °C. IR (KBr/cmÀ1): 3459,
3360, 2951, 1615, 1513, 1226, 741. 1H NMR (500 MHz, CDCl3): d (ppm) = 7.04–
7.03 (m, 1H), 6.80–6.73 (m, 2H), 6.53–6.52 (m, 1H), 4.25 (br s, 1H, NH), 3.43 (br
s, 1H, NH), 1.89 (s, 2H), 1.53 (s, 6H), 1.24 (s, 6H), 1.03 (s, 9H). 13C NMR
(125 MHz, CDCl3): d (ppm) = 157.2, 135.0, 124.1, 122.7, 119.7, 113.8, 56.0, 52.4,
50.8, 32.1, 32.0, 29.4, 26.4. MS: m/z (%) = 287 (M+, 27), 272 (11), 175 (32), 160
(100). Anal. Calcd for C18H29N3: C, 75.21; H, 10.17; N, 14.62. Found: C, 75.36; H,
10.20; N, 14.79. Compound 4h: yellow solid, mp: 153–155 °C. IR (KBr/cmÀ1):
3446, 3353, 2960, 1636, 1562, 1480. 1H NMR (500 MHz, CDCl3): d (ppm) = 7.76
(d, 2H, J = 7.0 Hz),7.53 (t, 1H, J = 7.0 Hz), 7.44 (t, 2H, J = 7.5 Hz), 7.18 (dd, 1H,
J = 8.0 Hz), 7.14 (s, 1H), 7.02 (d, 1H, J = 8.0 Hz), 4.53 (br s, 1H, NH), 3.76 (br s, 1H,
NH), 2.06 (d, 1H, J = 15.0 Hz), 1.72 (d, 1H, J = 15.0 Hz), 1.61–1.46 (m, 2H), 1.59
(s, 3H), 1.54 (s, 3H), 1.31 (s, 3H), 1.04 (s, 9H), 0.91 (t, 3H, J = 7.5 Hz). 13C NMR
(125 MHz, CDCl3): d (ppm) = 196.4, 158.6, 140.3, 139.2, 134.7, 131.5, 129.9,
128.1, 123.7, 122.8, 114.6, 56.4, 53.7, 52.7, 31.9, 31.8, 31.4, 29.2, 29.0, 24.2, 8.0.
MS: m/z (%) = 405 (M+, 27), 376 (61), 264 (100), 105 (22). Anal. Calcd for
C26H35N3O: C, 77.00; H, 8.70; N, 10.36. Found: C, 77.24; H, 8.76; N, 10.56.
Compound 4j: yellow solid, mp: 203–205 °C. IR (KBr/cmÀ1): 3431, 3337, 2958,
1634, 1561, 1466, 725. 1H NMR (500 MHz, CDCl3): d (ppm) = 7.76–7.43 (m,
5H), 7.23–7.17 (m, 1H), 7.17 (s, 1H), 7.05 (d, 1H, J = 8.0 Hz), 4.49 (br s, 1H, NH),
3.88 (br s, 1H, NH), 1.83–1.70 (m, 8H), 1.50 (s, 9H). 13C NMR (125 MHz, CDCl3):
d (ppm) = 196.4, 159.3, 141.1, 139.1, 135.1, 131.5, 131.2, 129.8, 128.0, 124.1,
122.9, 115.2, 61.7, 52.2, 37.1, 29.0, 24.0. MS: m/z (%) = 361 (M+, 100), 305 (62),
276 (54), 105 (35). Anal. Calcd for C23H27N3O: C, 76.42; H, 7.53; N, 11.62.
Found: C, 76.17; H, 7.56; N, 11.73. Compound 4m: red solid, mp: 174–175 °C. IR
(KBr/cmÀ1): 3413, 2923, 1615, 1525, 1310. 1H NMR (500 MHz, DMSO-d6): d
(ppm) = 7.77 (d, 1H, J = 3.0 Hz), 7.46 (m, 1H), 6.83 (d, 1H, J = 8.5 Hz), 6.39 (s, 1H,
NH), 6.05 (s, 1H, NH), 1.70–1.16 (m, 10H), 1.42 (s, 9H). 13C NMR (125 MHz,
DMSO-d6): d (ppm) = 161.3, 141.9, 141.3, 135.2, 121.6, 114.2, 107.8, 51.9, 51.5,
31.2, 28.5, 24.5, 19.7. MS: m/z (%) = 316 (M+, 100), 260 (75), 217 (77). Anal.
Calcd for C17H24N4O2: C, 64.53; H, 7.65; N, 17.71. Found: C, 64.40; H, 7.80; N,
17.53.
References and notes
1. (a) For recent reviews on multicomponent reactions, see: Multicomponent
Reactions; Zhu, J., Bienaymé, H., Eds.; Wiley-VCH: Weinheim, Germany, 2005;
(b) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321.
2. For reviews on isocyanides based MCRs, see: (a) DÖmling, A.; Ugi, I. Angew.
Chem., Int. Ed. 2000, 39, 3168; (b) DÖmling, A. Chem. Rev. 2006, 106, 17; (c) Nair,
V.; Rajesh, C.; Vinod, A. U.; Bindu, S.; Sreekanth, A. R.; Mathen, J. S.; Balagopal, L.
Acc. Chem. Res. 2003, 36, 899.
3. Notable exceptions are the also normally divalent carbenes and carbon
monoxide.
4. For some recently reported examples with isocyanide, see: (a) Silva, R. A. D.;
Santra, S.; Andreana, P. R. Org. Lett. 2008, 10, 4541; (b) Fujiwara, S.-i.; Asanuma,
Y.; Shin-ike, T.; Kambe, N. J. Org. Chem. 2007, 72, 8087; (c) Shaabani, A.;
Rezayan, A. H.; Ghasemi, S.; Sarvary, A. Tetrahedron Lett. 2009, 50, 1456; (d)
Haravi, M. M.; Baghernejad, B.; Oskooie, H. A. Tetrahedron Lett. 2009, 50, 767;
(e) Shaabani, A.; Maleki, A.; Mofakham, H.; Khavasi, H. R. J. Comb. Chem. 2008,
10, 323.
5. (a) Arthur, G.; Elor, K. B.; Robert, G. S.; Guo, Z. Z.; Richard, J. P.; Stanley, D.; John,
R. K.; Sean, T. J. Med. Chem. 2005, 48, 744; (b) Lainne, E. S.; William, J. S.; Robert,
C. R. J. Med. Chem. 2002, 45, 5604; (c) Andres, J.; Belen, Z.; Ibnacio, A.; Antonio,
M. J. Med. Chem. 2005, 48, 2019.
6. (a) Bailly, C.; Echepare, S.; Gago, F.; Waring, M. Anti-Cancer Drug Des. 1999, 15,
291; (b) Dell, A.; William, D. H.; Morris, H. R.; Smith, G. A.; Feeney, J.; Roberts, J.
C. K. J. Am. Chem. Soc. 1975, 97, 2497.
7. Jonathan, L. S.; Hiromitsu, M.; Toshihisa, M.; Vincent, M. L.; Hiroyuki, F. Chem.
Commun. 2002, 862.
8. Sascha, O.; Rudiger, F. Synlett 2004, 1509.
9. (a) Kazunobu, T.; Ryusuke, T.; Tomohiro, O.; Shuichi, M. Chem. Commun. 2002,
212; (b) Hegedus, L. S.; Marc, M. G.; Jory, J. W.; Joseph, P. B. J. Org. Chem. 2003,
68, 4179.
10. Peter, P. C.; Gang, Z.; Grace, A. M.; Carlos, H.; Linda, M. G. T. Org. Lett. 2004, 6,
333.
11. For the application of CAN in organic synthesis, see: (a) Nair, V.; Deepthi, A.
Chem. Rev. 2007, 107, 1862; (b) Varala, R.; Nuvula, S.; Adapa, S. R. Synlett 2006,
1549; (c) More, S. V.; Sastry, M. N. V.; Yao, C. F. Green Chem. 2006, 8, 91.